
Karp Demystified (for publication)

Josie O’Harrow, Pranshul Lakhanpal, Jonathan Schreiber, Theresa Migler

August 2020

1 Introduction

The class of known NP Complete problems has expanded greatly since its introduction in the early
1970’s. This has given us a structure on the NP problems, providing formal verification that the NP
Complete problem are related either by the challenge they present to solve or by their intractability.
The first such case is P = NP, and the second represents P ⊂ NP, a result that follows from Cook’s
”The Complexity of Theorem-Proving Procedures” [3].

From ”The Complexity of Theorem-Proving Procedures”, we gain an extraordinary result con-
cerning Satisfiability: any problem which may be decided by a non-deterministic turning machine in
polynomial time has a polynomial reduction via a deterministic Turing machine to the Satisfiability
problem [3]. Cook shows that for any arbitrary NP problem M, we may bound the reduction from
M to SAT in a way that is related the complexity of solving M on a nondeterministic machine. By
construction of the class NP M must have polynomial complexity.

Generally speaking, reductions represent a way to quickly convert between an instance of one
problem into another in a way that preserves acceptance or rejection of input. We define quickly as
being polynomial. While an efficient programmer would be weary of adding unnecessarily nested
code, we generalize quickness to mean there is a fixed number of nested algorithms- that we have
a run time that is polynomial in our input. Reductions give us a way to formalize our intuition
that certain problems are at least as hard as other problems, and provide some sense of ordering
among decision problems from their transitivity. We may use that idea to define complexity classes,
although we acknowledge that other constructions for complexity, such as restricting to linear in
input reductions, may be valuable. [4].

Using reductions, Karp constructed the NP-Complete class as a set of problems known to be
reducible from Satisfiability. This has extraordinary consequences: from Cook, any problem in
NP is polynomial reducible to SAT [3]. In ”Reducibility Among Combinatorial Problems”, Karp
presents 20 additional problems which, through the transitivity of polynomial reductions, may fill
the role of SAT in the Cook thesis.

The expansion of the NP-Complete class has provided new canvas for researchers working on
P = NP , formalized difficulty of algorithms for software engineers, and increased the trust in
systems that assume P 6= NP .

In our work, we consider only the original 21 NP-Complete problems, and further reductions
among these problems. We seek to independently show that all 21 problems have the same difficulty
by constructing a cycle of reductions. Finally, we present disambiguation for the original reductions
presented by Karp.

1

2 Related Work

2.1 Reducibility among Combinatorial Problems by Richard M. Karp

SAT

0-1clique 3SAT

Set PackingNode Cover Chromatic Number

DHC FAS FNS Set Covering Exact Cover Clique Cover

UHC 3D Hitting Set Steiner Tree Knapsack

Partition Sequencing

Max Cut

Figure 1: Karp’s Tree

Our Summer research project was based on the paper ”Reducibility among Combinatorial Prob-
lems” published by Richard Karp. In his paper he shows a group of 21 problems to be NP-complete,
by creating a tree of reductions which starts from Satisfiability. We outline the major sections of
Karp’s paper below.

Karp introduces a general model of computation, deterministic algorithms, but quickly refines
his model to be terminating recognition algorithms. That is, algorithms which have finite computa-
tions and result in either “ACCEPT” or “REJECT”. Karp introduces string recognition algorithms
as recognition algorithms with the domain {0, 1}*. Classes of string recognition algorithms are a
significant backbone for complexity theory, and introduce the idea of “equivalent” models of compu-
tation. Karp defines the class P to be those languages recognizable by single tape Turing Machines
in polynomial time, and notes that this class is equivalent to the class recognized by multihead or
multitape Turing Machines in polynomial time. The famous P vs. NP problem asks whether P is
additionally equivalent to the class NP, problems which are recognizable in polynomial time on a
nondeterministic Turing Machine. In a later section, Karp provides some surprising members of the
class P: 2SAT, min. Spanning tree, shortest path, min. Cut, arc cover, arc deletion, 2d matching,

2

sequencing with deadlines, solvability of linear equations. The simplicity of these problems and not
their NP Complete relatives is shocking!

To define reducibility, Karp uses the notion of polynomial functions from Σ∗ to Σ∗. The class of
such functions is Π, and a language L is defined to be reducible to M exactly when there is an element
in Π which transfers input in L to input in M and preserves acceptance and rejection. Of course,
Karp assumes that languages are defined exactly over Σ∗ here, but that requirement is later relaxed.

The class NP is defined in two distinct ways: The first uses I have absolutely no idea what
existential quantification means*existential quantification*. The second is: NP problems are those
recognizable by nondeterministic Turing Machines in polynomial time. Finally Karp introduces
Cook’s result on the class of NP problems, although notably the version of satisfiability used in
Karp’s work is CNF tautologies, equivalent to DNF tautologies as Cook pointed out via quick work
with De Morgan’s Laws.

The complete class is defined to be the set of languages which are both in NP and at least as
hard as satisfiability. Because of Cook’s result, this is equivalent to the class of languages in NP
that are at least as hard as any other problem in NP. Although originally stated in terms of func-
tions on Σ∗ → Σ∗, Karp extends the idea of reducibility to encompass functions between arbitrary
countable domains. In order to retain the polynomial nature of the reduction, Karp requires that
the function F : D → D′: i) Preserves string acceptance ii) Is equivalent to a polynomial function
when F composed with the encoding functions for the domain and the inverse encoding function
for the codomain is defined. In the reductions provided, Karp does not give encoding functions or
functions in Π. Instead, Karp uses his equivalent characterization to provide reductions between
domains and codomains for each problem, and allows the reader to check axioms (i) and (ii). In our
work, we have further verified axiom (i) for the reader. Karp provides a tree of reductions (figure
–) to show that each problem in the tree is reducible from SAT, and consequently may play the
role of SAT in Cook’s theorem. We have that the problems listed are equivalent, as defined via
reducibility, since each problem also reduces to SAT from Cook.

After listing his 20 NP Complete problems, Karp proceeds to list and prove that a certain class
of problems are at least as hard as every NP Complete problem. Now these problems are con-
sidered “NP Hard”. Karp introduces “Equivalence of Regular Expressions” (1), “Equivalence of
Nondeterministic Finite Automata” (2), and “Context-Sensitive Recognition” (3). He then shows
that 3SAT reduces to (1) which reduces to (2), and in addition that any NP problem will reduce
to (3).

Karp concludes his paper by listing three problems suspected to be NP Complete. These prob-
lems were Graph Isomorphism, Nonprimes, and Linear Inequalities. We now know that Nonprimes
is not NP Complete [8], although thankfully we still struggle to find the factors of such Nonprimes
efficiently.

3

2.2 Adjacent Works

2.2.1 Cook reducibility is faster than Karp reducibility in NP by Luc Longpre and
Paul Young

[7] Longpre and Young’s paper compared Cook reducibility to Karp reducibility, to determine which
is more efficient in proving problems are NP. This research paper investigates specific subsets of NP
to show that some classes of NP-Complete set have Cook reductions which are must faster than
Karp reductions. In relation to our research paper, this paper served as an additional resource
to help understand the main differences between Cook and Karp reductions. Cook reductions
rely on Turing Machines operating in polynomial time to reduce a problem to another one, while
Karp reductions utilize a polynomial time function that converts an instance of one problem to an
instance of another problem.

2.2.2 On the Structure of Combinatorial Problems and Structure Preserving Reduc-
tions by Giorgio Ausiello, Allessandro D’Atri, and Marco Protasi

[1] Ausiello, D’Atri, and Protasi studied the structure of optimization problems and created classes
of problems based on these structures. Through this, they were able to create a partial ordering of
problems and provide guidelines for creating reductions which preserve the structure of combinato-
rial problems. They also provided a list of reductions which all reduce easily and elegantly because
the structure of the problem is preserved. The reductions in this list include Clique ∝ Set Packing,
Clique ∝ Node-Cover, Node-Cover ∝ Set-Covering I, Node-Cover ∝ Feedback Node Set, Set Cov-
ering I ∝ Hitting Set, and Chromatic Number ∝ Exact Clique-Cover. This was especially useful
in our research when coming up with original reductions, and understanding why some problems
reduced to each other easily while others are extremely challenging and not intuitive.

2.2.3 Different adiabatic quantum optimization algorithms for the NP-complete exact
cover problem by Vicky Choi

[2] Choi investigated an optimization algorithm for the Exact Cover problem. She found that
although it was claimed by Altshuler that adiabatic quantum optimization fails for random instances
of exact cover, this claim is incorrect because flexible parameters were overlooked. Thus, Choi
concludes that the complexity of adiabatic quantum algorithms for random instances of exact cover
is open. While there was nothing from this research that directly contributed to my research, it was
interesting and important to learn more about Exact Cover, as several of the original reductions I
came up with involved the Exact Cover Problem.

2.2.4 Improved Results on Geometric Hitting Set Problems by Nabil H. Mustafa and
Saurabh Ray

[10] Mustafa and Ray worked with the Geometric Hitting Set Problem to find an optimization
algorithm. The optimization algorithm they came up with was a simple local-search algorithm that
iterated over local improvements. Similarly to the last related work on Exact Cover, this paper
helped improve understanding of the Hitting Set problem, as many of the original reductions I came
up with involved Hitting Set.

4

2.2.5 Linearly-Growing Reductions of Karp’s 21 NP-Complete Problems

In this text, the authors present a kernel of Karp’s original 21 problems which every other problem
is reducible to in not only polynomial, but linear time on the inputs. The kernel contains 0-1 Integer
Programming, which shows to be versatile for linear reductions on Karp’s NP Complete problems.
Also included are Feedback Node Set, Undirected Hamiltonian Cycle, Chromatic Number, Clique
Cover, and Job Sequencing. The authors suggest that linear reductions provide a useful way to
define complexity classes. The authors also introduce slack and surplus variables as a way to handle
the inequality present in 0− 1, an idea that was inspirational for our reduction from Satisfiability
to Knapsack as we considered how to allow for clauses to be satisfied by more than one literal that
they contain.

2.2.6 The Complexity of Optimization Problems by Mark W. Krentel

[6] Krentel deeply investigated several NP-Complete Problems to compute their optimal value. He
was able to create clases within the class of NP-Complete Problems through this investigation,
and quantified different levels of NP-completeness within the set of NP-complete problems. He
found that Traveling Salesperson is strictly harder than Clique, and Clique is strictly harder than
Bin Packing. This related to our research as it helped to understand that different problems are
of different difficulties, which helped to understand why some reductions were trivial and others
were extremely complex. It was also extremely interesting to understand how there are different
classes within the class of NP-Complete Problems, based on the structure and optimal value of the
problems.

2.2.7 The NP-Completeness of Steiner Tree and Dominating Set for Chordal BiPar-
tite Graphs by Haiko Muller and Andreas Brandstadt

[9] Muller and Brandstadt showed that Steiner Tree, Dominating Set, and Connected Dominating
Set are NP-Complete for chordal bipartite graphs. The NP-Completeness of Steiner Tree was
particularly useful to our research, as it was one of the problems we were working with in attempting
to construct a simple cycle. In this paper, it was shown that Steiner Tree is NP-Complete by
reducing Vertex Cover to Steiner Tree. This reduction was valuable to our research as it added a
potential edge in our cycle, and showed how problems can be reduced to Steiner Tree.

2.2.8 Primes is in P

[8] The set PRIMES is the language consisting of all prime numbers. Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena present an algorithm for testing membership in PRIMES in polynomial
time on a single tape, deterministic Turing Machine. They verify their result using number theoretic
results, both original and from existing literature. This paper has major significance to the original
Karp paper, because Karp listed PRIMES as a problem of unknown NP-Complete status; their
paper shows that PRIMES is not NP Complete unless P = NP, as it is a member of P. This paper
has other significance on the field of computing as a whole; traditionally fast primality tests used
number theory heuristics such as Fermat’s Little Theorem, which holds for all primes with any
base, but also for some composite-base pairs. For primality testing, work has been done to improve
the accuracy of the result through additional layers of testing or use of multiple methods, but until
”PRIMES is in P” there was no known polynomial algorithm that guaranteed correctness. This

5

holds major consequences on areas of computing based on primality testing, including cryptography,
and gives us a surprising result for a problem previously considered hard.

2.3 The Complexity of Theorem-Proving Procedures

[3] Cook’s 1971 paper established the now famous result that for any problem L in NP, L ≤P
SATISFIABILITY. We provide his result and a close rendition of the proof supplied below. This
proof needs to be worked on. I am hoping to construct all of the clauses explicitly, like I did for the
first four already. In addition, I think it makes sense to justify and modify the machine before the
construction of literals and clauses, because at the very end it throws me off reading through it.

Theorem 2.1. For any problem L ∈ NP, L ≤P Satisfiability in Disjunctive Normal Form (DNF-
SAT).

Proof. Proof. First note that Satisfiability in Conjunctive Normal Form (CNF-SAT) and DNF-SAT
are equivalent under the relation of p-reducibility, since an instance of one may be converted to an
instance of the other using De Morgan’s Laws. We proceed to show that NP problems are reducible
to CNF-SAT. Let L be a problem in NP. Since L is in NP, ∃Q ∈ π so that a non-deterministic
machine M decides L within Q(n) time. Let w be an input for M. We seek to construct a set of
clauses from w which are satisfiable if and only if w is accepted by M.

Because Q(n) bounds our computation on a nondeterministic machine, we seek a computation
of length ≤ Q(|w|) in both time and number of squares. We will employ this fact in our construction.

Let {σ1, σ2, · · · , σl} be the tape alphabet for M, and {q1, q2, · · · , qs} be the states. Let {xi} be
defined as follows:

{xi} ={P is,t | 1 ≤ i ≤ l ∧ 1 ≤ s, t ≤ Q(|w|)}
∪{Qit | 1 ≤ i ≤ s ∧ 1 ≤ t ≤ Q(|w|)}
∪{Ss,t | 1 ≤ s, t ≤ Q(|w|)}

We construct the following clauses for CNF-SAT:

C1 =
∧

1≤t≤Q(|w|)

 ∨
1≤i≤Q(|w|)

Si,t

 ∧
 ∧

1≤i<j≤Q(|w|)

(= ¬Si,t ∨ ¬Sj,t


Here C1 guarantees that for each time t, exactly one square is scanned. We are gauranteed existence
from the first sub-clause in each Dt, and uniqueness from the second. We proceed:

C2 =
∧

1≤s,t≤Q(|w|)

 ∨
1≤i≤l

P is,t

 ∧
 ∧

1≤i<j≤l

¬P is,t ∨ ¬P
j
s,t


C2 gaurantees that for each square s and time t, there is exactly one symbol.

C3 =
∧

1≤t≤Q(|w|)

 ∨
1≤i≤s

Qit

 ∧
 ∧

1≤i<j≤s

¬Qit ∨ ¬Q
j
t



6

C3 gives us that for each time t, there is exactly one state.

C4 = Q·1 ∧ S1,1 ∧ P i11,1 ∧ · · · ∧ |w|, 1
i|w| ∧ P 1

|w|,1 ∧ · · · ∧ P
q
Q(|w|),1

Given that w = σi1 · · ·σi|w| and σ1 is the blank symbol

C4 verifies that the computation contains the correct initial conditions.

C5, C6, and C7 are constructed according to the transition function for the machine. C5 is
responsible for ensuring that at each time transition, the symbols update appropriately. C6 ensures
that the states update according to δ, and C7 ensures that square (head position) is updated ap-
propriately.

C8 verifies that an accepting state is reached by the machine at some point. Cook’s final
specification is that we modify the machine to continue computing after the accept state so that
C1 ∧ C2 ∧ · · · ∧ C8 is satisfied for an accepting computation. The reader is left to verify the
complexity.

In addition to his strong result, Cook discusses limitations on complexity theory and suggests
models to formalize complexity classes for theorem proving procedures. Cook further defines degree
of difficulty from the idea of polynomial reducibility. The consequences of Cook’s paper extends far
beyond his result on SAT reducibility; Cook inspired theoretical computer scientists for generations
to come, including Karp who references Cook’s paper as a source of inspiration, and introduced
new formalisms to investigate complexity. Finally, Cook suggests that future work center around
showing that tautologies is not in P, which of course has been given considerable attention and
remains an open question.

2.4 Notation

N Natural numbers {1, 2, 3, ...}
Z Integers {..., -2, -1, 0, 1, 2, ...}
≤P Reduces via a single-tape Turing Machine in polynomial time
G = (V, E) A graph with vertices V and edges E
P The class of problems decided in polynomial time on a single tape Turing Machine
NP The class of problems decided in polynomial time on a single tape nondeterministic Turing Machine.

Should we add more notation? I didn’t put a lot in the actual table The reductions we present
in this paper are polynomial reductions between NP complete problems. We formalize the idea of
a polynomial reduction through the notion of a single tape Turing machine.

From the construction of NP, we know any problem presented here may be decided by some non-
deterministic Turing machine in polynomial time. That is, if we were to create a tree of all possible
solutions to check for validity, the longest branch would be polynomial on the input. Because some
Turing Machine decides each problem, we make the simplifying assumption that the input alphabet
for any NP Complete problem presented here is Z2, and all inputs are a finite string over Z2. Note
an alternative choice would be to justify the use of arbitrary domains as Karp did in [5].

7

Here I am not sure if this is what Sipser/ Cook do, but it is definitely different than Karp’s
convention. Karp uses arbitrary finite domains, and his lemma to justify this. I am instead trying
to say something of the form, if it is fast on an arbitrary domain then there is a fast, equivalent
machine that recognized that domain encoded into Z2. I think it is nuanced from what Karp did
but I am not sure. I would like to keep this section because it was fun to write but I am not sure
if this is how we want to do it.

Theorem 2.2. NP problems are decided in polynomial time by a nondeterministic Turing machine
over the alphabet Z2.

Proof. Let A be an NP problem decided by nondeterministic machine M in time O(p(n)) with
alphabet β. Note that β is finite, by the definition of Turing machines. We may uniquely index every
element in β using Z2 with strings over Z2 of length log2(|β|). Assume that the indexing is done via f.
If you’d like to include the complexity of computing f, note that it has at most |β| items to compute,
and thus will be linear in the length of the original alphabet. Now we construct G, a nondeterministic
Turing machine that decides A over Z2:

On input I = (w ∈ Z∗2)
Run M on f(w)

Note that f(w) yields an output of length |w| ∗ log2(|β|). This is polynomial in our original input,
and since the composition of polynomial functions is polynomial we have verified the existence of
G.

From here on, we are justified making the assumption that each problem uses the library Z2,
and we assert that Σ∗ represents the set of all finite strings over Z2. The language of each NP
problem is the set of strings over Σ∗ that are accepted. For each problem, the accepting criteria
is explicitly given so that only those encodings satisfying the accept clause will be accepted by the
machine. Now we are prepared to define reductions as they will be used throughout this paper.

Definition 2.1. Reduction [5] Given two languages, M and G, a reduction from M to G is given
by a function f : Σ∗ → Σ∗ which is computable in polynomial time by a one-tape turing machine
and satisfies:
i) w ∈M ⇐⇒ f(w) ∈ G.

That is, there is a polynomial function that maps input strings for M to input strings for G and
preserves language inclusion.

Following the conventions established by Karp, we will treat each decision problem as a language
recognition problem. For each language, the INPUT is the possible input string, and SOLUTION
describes arbitrarily all of the members of the language. We feel justified in using arbitrary alphabets
for our problems because we have shown that all NP problems have an equivalent NP machine which
uses as an alphabet Z2.

Definition 2.2. L ≤P M For our purposes, we say that a problem L ≤P M exactly when there is
a reduction from L to M. In this case, we say that M is “at least as hard” as L. Note the opposite
does not necessarily hold; if L ≤P M , we do not necessarily have that M ≤P L. In fact, Cook
points out that the relation defined by R = {(L,M) | L,M ∈ NP ∧ L ≤P M ∧M ≤P L} is in
equivalence relation, but ≤P is behaves closer to a partial ordering.

8

When discussing reductions, we care only about the time to convert between instances, however
implicit in this model is the idea that if L ≤P M and we are able to efficiently solve M, then we
can quickly solve L. Cook uses the notion of an “Oracle” which instantly decides the problem being
reduced to. We can also consider this from the context of polynomial solvability. If L ≤P M and
M has a polynomial time solving algorithm, then L must as well.

For a reduction from L to M, we consider the function f : Σ∗ → Σ∗ which converts an instance
of L to an instance of M, and a function h. When given a solution for M, h maps to a solution for
L. Similarly, when there is no solution for M, h outputs no solution. Thus, we adopt the following
convention to diagram a reduction from L to M:

Algorithm for L

I 7→ f 7→ f(I) 7→ Algorithm for M 7→ S 7→ h 7→ h(s)

9

3 The Cycle

Figure of the cycle. And some words describing it.
I am not sure what we are doing here- are we still trying to find a simple cycle? Are we going

to do something else tricky instead? Or just end with the new reductions we added?
- here is one cycle I spent some time on, somewhat fruitlessly.

"Exact Cover"

"3-Dimensional Matching"

"Directed Hamiltonian Circuit"

"Undirected Hamiltonian Circuit"

"Node Cover"

"Clique"

"Set Packing"

"Clique Cover"

"Chromatic Number"

"Hitting Set"

"Steiner Tree"

"SAT"

"3SAT"

"Sequencing"

"Feedback Arc Set"

"Feedback Node Set"

"Set Covering"

"0-1 Integer Programming"

"Knapsack"

"Partition"

"Max Cut"

4 Our Contributions to the Cycle

Theorem 4.1. The following table displays NP problems (left) which are reducible to NP problems
(right) via a single tape turing machine in polynomial time:

10

3D Matching ≤P Clique
Undirected Hamiltonian Circuit ≤P Directed Hamiltonian Circuit
Feedback Arc Set ≤P Set Covering
Set Packing ≤P Node Cover
Exact Cover ≤P Undirected Hamiltonian Circuit
Hitting Set ≤P Steiner Tree
Satisfiability ≤P Steiner Tree
Knapsack ≤P 0-1 Integer Programming
Clique Cover ≤P Chromatic Number
Feedback Arc Set ≤P Feedback Node Set
Set Covering ≤P Steiner Tree
Hitting Set ≤P Exact Cover
Hitting Set ≤P Clique
Set Packing ≤P Clique
Exact Cover ≤P Clique
Feedback Node Set ≤P Set Covering
Needs finished. XOR gatesMax Cut ≤P Steiner Tree
Exact Cover ≤P Satisfiability
Hitting Set ≤P Satisfiability
Needs checked - Satisfiability ≤P Knapsack
INAVLID - Satisfiability ≤P Feedback Node Set
Needs checked- Undirected Hamiltonian Circuit ≤P Hitting Set

11

4.1 3D Matching ≤P Clique

Algorithm for 3D Matching

I 7→ f(I) → Algorithm for Clique
→ x 7→ h(x)

→ N.S. 7→ N.S.

3-Dimensional Matching
Input: U ⊆ T × T × T where T is a finite set
Property: there is a set W ⊆ U such that |W | = |T | and no two elements of W agree in any
coordinate

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Details WLOG assume that U is enumerated by {1, ..., n}. Let V = {1, ..., n} and E = {{i, j} |
i, j do not overlap in a coordinate.} Let k = |T |.
Given a solution for clique, use the exact same elements in your solution for 3D matching.

Theorem 4.2. There is a solution for our instance of clique ⇐⇒ there is a solution for the given
instance of 3D matching.

Proof. First note that as there are
n(n− 1)

2
pairings to iterate over when forming E, and for each

pairing at most 3 check steps, the complexity of our reduction function is polynomial. We now
proceed to prove the theorem.
⇒ Assume there is a solution for 3D matching. In that case, the k elements in U that do not
overlap in a coordinate will all be connected to each other in our graph, and thus form a solution
for clique.
⇐ Now suppose that there is a solution for our instance of clique. In that case, |T | of the elements
in U do not overlap in a coordinate, so they are a solution for 3D matching.

4.2 Undirected Hamiltonian Circuit ≤P Directed Hamiltonian Circuit

Algorithm for Undirected Hamiltonian Circuit

I 7→ f(I) → Algorithm for Directed Hamiltonian Circuit
→ x 7→ h(x)

→ N.S. 7→ N.S.

Undirected Hamiltonian Circuit
Input: A graph G
Property: G has a cycle which includes each vertex exactly once.

Directed Hamiltonian Circuit
Input: A directed graph H
Property: H has a directed cycle which includes each vertex exactly once.

12

Details Given I = (N, E) in Undirected Hamiltonian Circuit, form f(I) as: N = N. E = {< u, v >
,< v, u >| {u, v} ∈ E}.
Given a solution S = n0n1 · · ·nm for Directed Hamiltonian Circuit, use the same sequence for
Undirected Hamiltonian Circuit.

Theorem 4.3. There is a solution for an instance I of Undirected Hamiltonian Circuit ⇐⇒ there
is a solution for f(I) in Directed Hamiltonian Circuit.

Proof. ⇒ Assume you have a Undirected Hamiltonian Circuit solution, n0n1 · · ·nm. In f(I), there
is a directed edge between each ni mod m+1 → ni+1 mod m+1. In that case, we have a Directed
Hamiltonian Circuit.
⇐ Now suppose you have a Directed Hamiltonian Circuit, n0n1 · · ·nm. Then for each edge
ni mod m+1 → ni+1 mod m+1, {ni mod m+1, ni+1 mod m+1} is in the original edge set. In that
case, our directed cycle forms a valid undirected cycle.

4.3 Feedback Arc ≤P Set Covering

Algorithm for Feedback Arc

I 7→ f(I) → Algorithm for Set Covering
→ x 7→ h(x)

→ N.S. 7→ N.S.

Feedback Arc Set
Input: A directed graph H = (V,E) and a positive integer k
Property: There exists S ⊆ E such that every directed cycle of H contains an arc in S and |S| ≤ k

Set Covering
Input: A finite family of sets {Sj} and a positive integer k
Property: There existsa subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj

Details Given an instance I = (G, k ∈ N) of feedback arc set, we form an instance of set covering
as follows: Let {a1, ..., an} be the set of cycles in our graph, and {ei} be the edges. Let {Sj} =
{ai | ai contains ej}, and let k = k.
Given a solution, s = {Th} of set covering, let h(s) = S = {ej | Sj ∈ {Th}}.
Note that finding cycles is known to be fast, and constructing {Sj} as described here is of complexity
O(|ej |

∑
|{ai}|).

Theorem 4.4. An instance I of feedback arc set has a solution exactly when f(I) has a solution in
set covering.

Proof. ⇒ Assume that feedback arc has a solution. In that case, there is a set S of size ≤ k so
that every cycle contains an arc in S. Now consider {Th} = {Sj | ej ∈ S}, which is of size k. Given
a ∈ {ai}, there must be some ej ∈ S contained in it, so a ∈ {Th}.
⇐ Conversely, suppose that our instance of set covering has a solution. Consider the set of edges
indexed by it to be S. Given a cycle in our graph, we must have some element in S appear in the
cycle, or we would not have a proper cover. Thus we have a solution for feedback arc set of size
|S| = k.

13

4.4 Set Packing ≤P Node Cover

Algorithm for Set Packing

I 7→ f(I) → Algorithm for Node Cover
→ x 7→ h(x)

→ N.S. 7→ N.S.

Set Packing
Input: A family of sets {Sj} and a positive integer `
Property: {Sj} has ` mutually exclusive sets.

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Details Given an instance I = ({Sj}, k ∈ N) of set packing, let V = {j}, E = {{i, k} | Si∩Sk 6= ∅},
and k = |{Sj}| − k.
Given a solution to vertex cover, S = R, h(S) is given by {Sj | j ∈ RC}.

Theorem 4.5. There is a solution for instance I of set packing ⇐⇒ there is a solution for f(I)
in node cover.

Proof. ⇒ Assume you have a set packing solution of size k given by {Th}. In that case, any
remaining edges in your graph must be adjacent to {k | Sk /∈ {Th}}. That set has magnitude
|{Sj}| − k.
⇐ Alternatively, assume that you have a node cover, R, of size |{Sj}| − k. Consider the set
{Sj | j /∈ R}. This set has size |{Sj}| − (|{Sj}| − k) = k. Furthermore, from construction no items
in that set may overlap. In that case, we have a set packing solution of size k.

4.5 Exact Cover ≤P Undirected Hamiltonian Circuit

Algorithm for Exact Cover

I 7→ f(I) → Algorithm for Undirected Hamiltonian Circuit
→ x 7→ h(x)

→ N.S. 7→ N.S.

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Undirected Hamiltonian Circuit
Input: A graph G
Property: G has a cycle which includes each vertex exactly once.

Details Given an instance I = {Sj} of exact cover, construct an instance f(I) of Undirected Hamil-
tonian Circuit as follows: Let V = {out − j, in − j} ∪ {ui ∈

⋃
Sj}. For each Sj , let φj be a

cycle on its elements. Let E = {{ui, φj(ui)} | ui ∈ Sj} ∪ {{ui, in − j}, {φmj (ui), out − j} | ui ∈

14

Sj , m is the degree of φj} ∪{{in− j, out− k}}.
Given a solution for Undirected Hamiltonian Circuit, let {Th} be equal to {Sj | in−j goes to some ui in the path}.

Theorem 4.6. There is a solution for an instance I of exact cover ⇐⇒ there is a solution for
f(I) in Undirected Hamiltonian Circuit.

Proof. ⇒ Assume you have an exact cover solution, {Th}. For each Sj ∈ {Th}, include in − j →
uj1 → uj2 → · · · → out− j in the path. This is acceptable since the elements in Sj are adjacent to
each other, and to the in-j, out-j nodes. Now let π be any cycle you please on the Sj , and complete
the Undirected Hamiltonian Circuit by attaching out− k to in− π(k). Note that we have covered
all of our elements, and reused none of our vertices.
⇐ Now let S = n0n1 · · ·nm be a complete cycle on our path. Now consider our proposed solution,
h(S). For a contradiction, suppose that we cannot cover all of the elements in

⋃
Sj without overlap.

In that case, for any two sets, they must have one element in common. Note that to include
every element we must traverse through one of the sets containing it completely, due to our cycle
restriction. But if we always have some overlap, during traversal of the cycle of elements in a set
we must run into a re-used node, and thus not have a Undirected Hamiltonian Circuit. Then there
must be some configuration of an exact cover.

4.6 Hitting Set ≤P Steiner Tree

Algorithm for Hitting Set

I 7→ f(I) → Algorithm for Steiner Tree
→ x 7→ h(x)

→ N.S. 7→ N.S.

Hitting Set
Input: A family {Ui} of subsets of {s1, s2, . . . sr}
Property: there is a set W such that for each i, |W ∩ Ui| = 1

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

Details Given an instance {Ui} of hitting set, we construct our instance of steiner tree as follows
via f: Let k = |{Uj}|. Let V = {n0} ∪ {ui} ∪ {Uij | ui ∈ Uj} ∪ {Uj} ∪ {U balancerj }. Let R =
{n0} ∪ {Uj}. Draw the edges as: connect n0 to each of the ui via an edge with weight 0. For each
ui, create a chain between its Uij nodes where each edge has weight 1. From the last node in that
chain, connect it to each of the {Uj} nodes which show up in the chain via edges of weight k + 1.
Draw an edge between each {Uj} and {U balancerj } with weight -(k + 1).
Given a solution for steiner tree, construct W as the set of ui connected to n0.

Theorem 4.7. There is a solution for an instance I of hitting set ⇐⇒ there is a solution for f(I)
in steiner tree.

Proof. ⇒ Suppose you have a solution for hitting set, W. For each ui ∈W , include {ui, n0} in our
tree. So far, our tree has weight 0. Next, attach each {ui} to its entire chain, and then to the
matching terminal vertices. We know the connection between the chain and the terminal vertices

15

will have weight 0. We are left to verify that all of them are covered, and that the total weight
of our included chain sections is ≤ k. Let’s address the first requirement first. Because we have
a hitting set, W ∩ Ui 6= ∅∀i. That is, for each terminal vertex like Uj , it must be connected to
the chain of some ui ∈ W . Now we verify the total weight of the included chains. Assume for a
contradiction that it is > k. In that case, by the pigeonhole principle some distinct ui, uj have a
shared Uj in their chain. But the chains are constructed from the sets they appear in! If this were
the case, we would not have a hitting set. Then we must have a solution for Steiner Tree.
⇐ Assume you have a solution for f(I). In that case, we verify W. First, note that for each Ui,
Ui ∩W 6= ∅, since we must get to the Ui after traversing a chain attached to one of our elements.
Note that we cannot access the Ui except by first traversing a chain, since you would end up with an
additional unbalanced k + 1 in your weight sum trying to skip between the nodes. Furthermore, if
|Ui ∩W | > 1 then our tree would have weight > k and would not be a solution in f(I). We conclude
that we have a hitting set.

4.7 Satisfiability ≤P Steiner Tree

Algorithm for Satisfiability

I 7→ f(I) → Algorithm for Steiner Tree
→ x 7→ h(x)

→ N.S. 7→ N.S.

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property:
∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S then xi /∈ S, and if xi ∈ S then xi /∈ S and
S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

Details Given an instance I = ({C1, ..., Cp}, {x1, ..., xr, x̄1, ..., x̄r}, we form an instance f(I) of
Steiner Tree as:
Let k = 1. Let N = {n1, n0, x1, ..., xr, x̄1, ..., x̄r, x

end−0
1 , xend−1

1 , ..., xend−0
r , xend−1

r , C1, ..., Cp, C
end
1 , ..., Cendp }.

Let R = {n0, n1}∪{xendi }∪{Cj}. This is where it gets real wild folks, now we add an edge between
n0 and n1 with weight 1. From n1, add an edge to each xi, x̄i with weight 1. For each xi, x̄i connect
them to xend−0

i with weight 1. Connect xend−0
i to xend−1

i with weight -2. Now for each Cp, connect
it with weight 1 to any literal contained in it. Furthermore, connect it with weigth -1 to Cendp . This
completes our construction.
Given a solution for Steiner Tree, we form a solution S for Satisfiability as the set of literals included
in the path to the {Cj} nodes.

Theorem 4.8. There is a solution for an instance I of Satisfiability ⇐⇒ there is a solution for
f(I) in Steiner Tree.

Proof. ⇒ Assume Satisfiability has a solution, S. We construct a solution for Steiner Tree: for each
Cj , connect it to Cendj and one of the literals in S which satisfy it. This has net weight 0. For xi

16

in S, include the edges between n0 to xi, and from xi to xend−0
i , and between xend−1

i . It is quick
to check that this has net weight 0. Note that the Cj will be accessible from the set of literals in S.
For any unassigned literals, pick either path from n1 to the end-0, and then to end-1. This has net
weight 0. Finally, include the edge between n0 and n1 for a net weight of 1. The sum of all weights
is 1. Furthermore, every vertex in R has been covered and is accessible from a tree starting at n0.
⇐ Now suppose that you have a solution for f(I) in Steiner Tree. Let S = {σ | {σ,Cj} is a path
in our solution for some Cj}. We verify that this is a solution for Satisfiability. First, for each Ci,
Ci∩S 6= ∅, since the Ci are required vertices in our tree and are only accessible from xi or x̄i nodes.
Now we confirm that there are no conflicting literals. Assume for a contradiction that some xi and
x̄i are in S. In that case, either each {n1, xi} and {n1, x̄i} both show up in the tree, or (WLOG)
x̄i is accessed by a Cj that is already accessed by another literal node. In the first case, we end
up with a positive balance of weight, because we use 2 to arrive at each literal and we need +1 to
arrive at xendi . The available offset is -2, so we net +1. In the second, the other literal accessing
Cj adds +1, and x̄i adds + 1. The offset available is -1, so we net + 1. Finally, we note that using
a literal must result in a net weight of at least 0 in every case. Our Steiner Tree path would have
weight ≥ 2, which is above our threshold. In that case, we may have no conflicting literals in S.

4.8 Knapsack ≤P 0-1 Integer Programming

Algorithm for Knapsack

I 7→ f(I) → Algorithm for 0-1 Integer Programming
→ x 7→ h(x)

→ N.S. 7→ N.S.

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

0-1 Integer Programming
Input: A integer matrix C and an integer vector ~d
Property: there is a 0-1 vector ~x such that C~x ≥ ~d

Details Given an instance (a1, ..., ar, b) of knapsack, we form an instance of 0-1 integer programming
as follows: Let C be a (2 × r) matrix. In that case, d must be a (2 × 1) matrix. Define each as
follows:

c1i = ai

d11 = b

c2i = −ai
d21 = −b

Given a solution s = ~x of integer programming, we form h(s) as xi = xi.

Theorem 4.9. There is a solution for instance I of knapsack exactly when there is a solution for
f(I) in integer programming.

17

Proof. You have a solution for knapsack ⇐⇒
∑
aixi = b ⇐⇒ b ≤

∑
aixi ≤ b ⇐⇒

∑
aixi ≤ b

and
∑
aixi ≥ b ⇐⇒

∑
−aixi ≥ −b and

∑
aixi ≥ b. We see that these are precisely the conditions

required to solve our instance of 0-1 programming.

4.9 Clique Cover ≤P Chromatic Number

Algorithm for Clique Cover

I 7→ f(I) → Algorithm for Chromatic Number
→ x 7→ h(x)

→ N.S. 7→ N.S.

Clique Cover
Input: A graph G′ = (N ′, E′) and a positive integer `
Property: N ′ is the union of ` or fewer cliques

Chromatic Number
Input: A graph G = (N,E) and a positive integer k
Property: there is a function φ : N → Zk such that if u and v are adjacent then φ(u) 6= φ(v)

Details Given an instance of clique cover, I = (G’, l) we form an instance of chromatic number f(I)
as: G = G′C , k = l.
Given a solution for chromatic number, S, h(S) is the sets of nodes colored the same under S.

Theorem 4.10. There is a solution for instance I of clique cover ⇐⇒ there is a solution for f(I)
in chromatic number.

Proof. ⇒ Assume you have a solution for clique cover. In that case, you have l distinct cliques
which union to cover the nodes. Enumerate these sets as C1, C2, ..., Cl. We construct φ : N → Zk
as φ(n) = the largest j so that n ∈ Cj . Since our clique cover covers the nodes, our map is defined
over the domain. Further, since k = l the codomain for our map is appropriate. Finally, we verify
that for u, v that are adjacent, φ(u) 6= φ(v). Since u,v are adjacent in the complement, they must
not have been in G’. In that case, they do not show up in any of the same Cj . Then we must not
have φ(u) = φ(v). We have verified our solution for chromatic number.
⇐ Now suppose you have a solution for chromatic number. Let your clique cover, {Cj} be defined
so that Cj = φ−1(j). There may be no more than l such sets, since the domain of φ is Zk = Zl.
We verify that each Cj is a clique: Given u, v ∈ Cj , u and v were not adjacent in the complement
to receive the same coloring. This implies that they are adjacent in our graph. Since they were
arbitrary, any two nodes in a Cj are adjacent, verifying each is a clique. Finally, each node must
be included since φ is defined from N. Thus we have a solution for clique cover.

4.10 Feedback Arc Set ≤p Feedback Node Set

Algorithm for Feedback Arc Set

I 7→ f(I) → Algorithm for Feedback Node Set
→ x 7→ h(x)

→ N.S. 7→ N.S.

18

Feedback Arc Set
Input: A directed graph H = (V,E) and a positive integer k
Property: There exists S ⊆ E such that every directed cycle of H contains an arc in S and |S| ≤ k

Feedback Node Set
Input: A directed graph H = (V,E) and a positive integer k
Property: There exists R ⊆ V such that every directed cycle of H contains a vertex in R and
|R| ≤ k

Details I: A graph H = (V,E) and a positive integer k.
f: Function f takes the input I and convert it into an instance of Feedback Node Set problem

where H’ is a directed line graph of H with

V ′ = {(u, v)|(u, v) ∈ E}
E′ = {< (u, v), (v, w) > |{u, v, w} ∈ V and < u, v >,< v,w >∈ E}
k = l

Algorithm for Feedback Node Set: Suppose there is a polynomial time algorithm for the
Feedback Node Set problem.

S: R ⊆ E′ such that every directed cycle of H ′ contains a vertex in R and |R| ≤ k
h(S): function h takes S as an input and return the respective edges from G.

Lemma 4.11. If there exist a cycle between nodes of H, then there exist a cycle in H ′ between
nodes corresponding to the edges between the nodes in H which form a cycle.

Proof. (⇒) Suppose that we construct graph H ′ as described above. Suppose that there is graph
that has a path from node u to node w with n number of nodes in between u and w in H. The
path from u to w will be followed by directed edges {< u, 1 >,< 1, 2 >, . . . , < n − 1, n >,<
n,w >}. According to our construction the line graph H ′ will have a sub graph with the nodes
{(u, 1), (1, 2), . . . , (n− 1, n), (n,w)}. There will be edges {< (u, 1), (1, 2) >,< (2, 3), (3, 4) >, . . . , <
(n−1, n), (n,w) >}. Thus if there exists a path from u to w with n nodes between them then there
will be a path in the line graph H ′ whose nodes represents the edges (path) of H. Lets add an edge
between< w, u > between nodes w and u in graph H. Thus there exists a cycle between nodes u,
the n nodes and w back to u in H. If we add an edge in H we have to add a node representing that
edge in H ′ and connect it to nodes it needs to be connected with. According to our constructed
graph node (w, u) will have a directed edge coming in to it from node (n,w) and (w, u) will have a
directed edge going out from itself to node (u, 1). Since there already exists a path from (u, 1) to
(n,w) and we added a path from (n,w) to (u, 1) through (w, u) it will form a cycle between nodes
{(u, 1), (1, 2), . . . , (n,w), (w, u)}. Therefor H ′ has a cycle.

Theorem 4.12. H = (V,E) has a Feedback Arc Set of size l, iff there is a feedback arc set of size
k on the graph, H ′ = (V ′, E′), as defined above.

Proof. (⇒) Let us assume there exist a feedback arc set, S, for the graph H of size k. Lets con-
struct graph H ′ as described above. Lets claim that for H ′, R = {(u, v)|(u, v) ∈ S}. Let us assume
that removing all the nodes and their connected edges from R will not break all the cycles in the
graph. If that is true then R will not be a feedback node set for the graph H ′. According to our
construction any node (u, v) in graph H ′ will have directed edges connecting other nodes which
represent edges connected to the nodes u and v in H. So if edge < u, v > was a part of a cycle (i.e.

19

nodes u and v were part of a cycle) with n edges in H it’s corresponding node in H ′ should also
be a part of a cycle with n nodes. Thus if removing edge < u, v >∈ S from H breaks all the cycles
in the graph it should also break all the cycles in H ′, which is a contradiction to our assumption.
Thus R = {(u, v)|(u, v) ∈ S} is the feedback node set for H ′.

(⇐) Let us assume that H ′ has a feedback node set R of size l. According to our construc-
tion a node (u, v) in H ′ is connected to nodes which represent directed edges which are connected
to either u or v in H. Let us assume that for H, S =< u, v > |(u, v) ∈ R. Further for the sake of
contradiction let us assume that removing all the edges in S will not break all the cycles in H. If
that is true then S is not a feedback arc set for the graph H. According to our construction if any
node (u, v) is a part of a cycle in H ′ with n other nodes, its corresponding edge < u, v > will also
be in a cycle with the edges represented by the n nodes in H. And if removing nodes (u, v) ∈ R
breaks all the cycles in graph H ′, it should also break all the cycles if the same edges represented
by the removed nodes in R are all the cycles in H should also be broken. This contradicts our
assumption, thus edges S =< u, v > |(u, v) ∈ R is the feedback arc set of H.

4.11 Set Covering ≤P Steiner Tree

Algorithm for Set Covering

I 7→ f 7→ f(I) 7→ Algorithm for Steiner Tree 7→ S 7→ h 7→ h(s)

Set Covering
Input: A finite family of sets {Sj} and a positive integer k
Property: There existsa subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

Details -Let I = ({Sj}, k), where {Sj} is a family of subsets and k is a positive integer. Then f
will define a graph G, with vertices,
V = {no} ∪ {Sj} ∪ {ui}, and Edges,
E = {{no, Sj}} ∪ {{Sj , ui}|ui ∈ Sj}
f will also define R ⊆ V = {no} ∪ {ui}
f will also define w, a weighting function, w(e) = 1 for all e ∈ E
f will also define an integer, W = |{ui}|+ k.
-Suppose there is polynomial time algorithm for Steiner Tree, that returns Solution S, a subtree of
G of weight ≤ k containing the set of vertices R.
-h(S) will take solution S, a subtree of G. h will loop through this subtree, taking vertices labeled
Si with 1 ≤ i ≤ j, and adding them to a set R. This list R will then be returned.
-No solution implies no solution.

Theorem 4.13. {Sj} has a set covering of size k iff Graph G = (V,E), with weighting function
w : E 7→ Z, and integer W , as defined above, form a Steiner Tree on Graph G.

Proof. ⇒ Suppose there is a set covering, Th of size k on {Sj}. Now, take Graph G, as defined
above, with R ⊆ V , W , and weighting function w. According to our construction, the nodes in

20

R are {no}, and {ui}, w : E 7→ Z = 1 for all e ∈ E, and W = k + | ∪ {Sj}|. In addition, there
are edges between {no} and each {Sj}, and each {Sj} to each {ui} that represents an element of
{Sj}. In order for each of the nodes in R to be covered by the Steiner Tree, there must be an edge
chosen between each {ui} and a {Sj}. Since we know {Sj} has a set covering, Th, we can connect
each {ui} with exactly one arbitrary {Sj} that represents a set in Th. Since Th is a set covering on
Sj , there is guaranteed to be at least one edge from every {ui} to an {Sj} that is also in {Th}. If
exactly one edge is chosen for each node representing an element in ∪Sj , then the total weight will
be equal to | ∪ {Sj}|, since each edge has a weight of 1. Now, if we include the edges from {no} to
each {Sj} in Th, then every node in R will be contained in the subtree, and the edges chosen will
form a complete subtree, as every set in {Th} ∈ {Sj} will be accessible from no, and every {ui} is
accessible from the sets in {Th} ∈ {Sj}. Further, since there are k sets in Th, the total weight is
now k + |{Sj}|, which is equal to W . Thus, there is a Steiner Tree on G.
⇐ Suppose there is a Steiner Tree on G, with set R ⊆ V , weighting function w : A 7→ Z, and integer
W , all constructed as defined above. Since the elements chosen to be in R in our construction were
{no} and {ui}, these must be accessible through the Steiner Tree. Further, since we have a Steiner
Tree the total weight of the edges included must be ≤W . Since each of the {ui} must be accessed,
and the only access to them is through edges of weight 1 to the clauses they are a part of, the
Steiner Tree must have at least weight {ui}. We know that the total weight must be ≤ W , which
is equal to {ui}+k. Since we already have weight {ui}, the remaining edges that were chosen must
have weight ≤ k. Since the weight from {no} to each node representing a set is equal to 1, k or less
of these nodes representing sets must have been chosen. These {Sj} that were chosen must also
have a connection to every {ui}. Thus, k or less sets can be chosen in {Sj} such that every element
in {ui} is a part of the chosen sets, which, by definition is a set covering.

4.12 Hitting Set ≤P Exact Cover

Algorithm for Hitting Set

I 7→ f 7→ f(I) 7→ Algorithm for Exact Cover 7→ S 7→ h 7→ h(s)

Hitting Set
Input: A family {Ui} of subsets of {s1, s2, . . . sr}
Property: there is a set W such that for each i, |W ∩ Ui| = 1

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Details -Let I = {Ui}, a family of subsets of a set {sj , j = 1, 2, . . . t}. Then f will define a family
of subsets, {Sj}, such that ui ∈ Sj iff sj ∈ Ui. (i.e. {Sj} will contain j sets, j = | ∪ Ui|, with
elements representing the sets that each element represented by Sj are in in {Ui}).
-Suppose there is a polynomial time algorithm for Exact Cover, that returns Solution S, a subset
of Sj such that ∪S = ∪Sj and S is disjoint.
-h(S) will take in a set of integers, S, representing an Exact Cover on {Sj}. This same set can be

21

returned, as the same integers represent the elements on {Ui} that form a hitting set.
-No solution implies no solution

Theorem 4.14. {Ui} has a hitting set iff {Sj}, as constructed above, has an exact cover.

Proof. ⇒ Suppose there is a solution, W , for hitting set on Ui such that |W ∩Ui| = 1. Sj is defined
with ui ∈ Sj iff sj ∈ Ui. Thus, since the elements in Ui represent sets in Sj , and the sets in Ui
represent elements in Sj , if there is a subset of elements in sj ∈ Ui that can intersect with each set
in Ui with a cardinality of 1, that means there is a subset of sets in Sj that contains each element
in Sj exactly once, which, by definition, is an exact cover.
⇐ Suppose there is an exact cover on Sj . That is, there is some subset, Th, that is disjoint and
∪Th = ∪Sj . Given our construction, sj ∈ Ui iff ui ∈ Sj . By definition, an exact cover on Sj means
that some subset of sets can be chosen such that each element in ∪Sj appears exactly once. On Ui,
this means that some subset of elements in ∪Ui can be chosen such that each set in ∪Ui contains
exactly one element. By definition, this is a solution for hitting set.

4.13 Hitting Set ≤P Clique

Algorithm for Hitting Set

I 7→ f 7→ f(I) 7→ Algorithm for Clique 7→ S 7→ h 7→ h(s)

Hitting Set
Input: A family {Ui} of subsets of {s1, s2, . . . sr}
Property: there is a set W such that for each i, |W ∩ Ui| = 1

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Details -Let I = {Ui}, a family of subsets of a set {sj , j = 1, 2, . . . t}. Then f will define a Graph,
G = (V,E), with
V = {< i, j > |ui ∈ Sj , Sj ∈ {Sj}} (i.e. each element of each set gets a node, for example if
S1 = (1, 2), S2 = (1, 3, 5), V = (1, 1), (2, 1), (1, 2), (3, 2), (5, 2)). and
E = {<< i, j >,< k, l > |j 6= l and (i = k or (if i ∈ Sj , k 6∈ Sj for all Sj ∈ {Sj} and if k ∈ Sj , i 6∈ Sj
for all Sj ∈ {Sj}))} (i.e. edges are only between nodes from different sets, and there are only edges
if two nodes represent the same element in ∪{Sj} or if the two elements do not appear in any of
the same sets in {Sj}.
f will also define an integer, k = |{Sj}|.
-Suppose there is a polynomial time algorithm for Clique, that returns solution S, a subset of
G = (V,E) that represents a clique of size k on G.
-h(S) will take in solution S, and loop through it, adding the element that each node represents to
set W if it hasn’t already been added (no duplicates). W will then be returned.
-No solution implies no solution.

Theorem 4.15. {Ui} has a hitting set iff G = (V,E), constructed as defined above, has a clique
of size k.

22

Proof. ⇒ Suppose {Sj} has a hitting set. That is, there is some set, W ⊆ ∪Sj , such that |W∩Sj | = 1
for all Sj ∈ {Sj}. By our construction, each element in every Sj has a node, and nodes are connected
if they represent the same element in ui, or if they do not appear in any of the same sets in Sj .
Thus, if the nodes representing the element in each that is part of the solution W is chosen to be in
the clique, there will be an edge to every other node representing elements in solution W . This is
because the only way nodes are not connected is if the ui they represent appear in any set together.
Further, since we need a clique of size |{Sj}|, since a hitting set requires one element from each set,
there will be |{Sj}| elements in the clique. Thus, we have a clique of size |{Sj}| on G.
⇐ Suppose we have a clique of size |{Sj}| on G. Further suppose G was constructed as defined
above. Since edges were only assigned if 2 elements were in different sets, had the same element,
or don’t appear in any sets together, we know that a clique of size |{Sj}| means that each set
contains exactly one element in the clique. If each element in the clique is chosen to be in W , then
|W ∩ Sj | = 1 for all Sj ∈ {Sj}, which, by definition, is a hitting set on {Sj}.

4.14 Set Packing ≤P Clique

Algorithm for Set Packing

I 7→ f 7→ f(I) 7→ Algorithm for Clique 7→ S 7→ h 7→ h(s)

Set Packing
Input: A family of sets {Sj} and a positive integer `
Property: {Sj} has ` mutually exclusive sets.

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Details -Let I = {Sj}, k, a family of subsets {Sj} and an integer k. Then f will define a Graph,
G = (V,E), with
V = {Sj |Sj ∈ {Sj}} (i.e. one node for each set in Sj) and
E = {< Sj , Si > |Sj and Si are mutually exclusive}
-Suppose there is a polynomial time algorithm for Clique, that returns solution S, a subset of
G = (V,E) that represents a clique of size k on G.
-h(S) will take in solution S, a subset of G representing a clique of size k on G. h(S) will return
this same subset, as the nodes were named to represent sets in {Sj}, and the same nodes in this
clique represent a set packing for {Sj}.
-No solution implies no solution.

Theorem 4.16. {Sj} has a set packing of size k iff G = (V,E), constructed as defined above, has
a clique of size k.

Proof. ⇒ Suppose there is a solution for set packing on {Sj}. That is, there are k sets in {Sj} that
are mutually exclusive. G, constructed as defined above, has a node for each set in Sj , and edges
only if the sets the nodes represent are mutually exclusive. Thus, since the nodes representing sets
in the solution for set packing are mutually exclusive, there will be edges between each node, and
they will form a clique of size k.

23

⇐ Suppose G, constructed as defined above, has a clique of size k. Since edges in G are only there if
the two sets are mutually exclusive, this means there are k mutually exclusive sets on {Sj}, which,
by definition, is a Set Packing.

4.15 Exact Cover ≤P Clique

Algorithm for Exact Cover

I 7→ f 7→ f(I) 7→ Algorithm for Clique 7→ S 7→ h 7→ h(s)

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Details -Let I = {Sj}, a family of subsets of a set {sj , j = 1, 2, . . . t}. Then f will define a Graph,
G = (V,E), with
V = {< i, j > |ui ∈ Sj , Sj ∈ {Sj}} (i.e. each element of each set gets a node, for example if
S1 = (1, 2), S2 = (1, 3, 5), V = (1, 1), (2, 1), (1, 2), (3, 2), (5, 2)). and
E = {<< i, j >,< k, j >> | for all ui, uj ∈ Sj} ∪ {<< i, j >,< k, l > | if Sj and Sl are mutually
exclusive. f will also define an integer, k = |{ui}| (i.e. the number of elements in ∪Sj
-Suppose there is a polynomial time algorithm for Clique, that returns solution S, a subset of
G = (V,E) that represents a clique of size k on G.
-h(S) will take in solution S, and loop through it, adding the set that each node represents to set
R if it hasn’t already been added (no duplicates). W will then be returned.
-No solution implies no solution.

Theorem 4.17. {Sj} has an exact cover iff G = (V,E), constructed as defined above, has a clique
of size k.

Proof. ⇒ Suppose there is an exact cover, Th on {Sj}. That is, there is some set, Th, such that
∪Th = ∪Sj and Th is disjoint. By our construction, nodes are only connected if they are in the same
set, or if their set is mutually exclusive with another nodes set. Thus, if the sets in the exact cover’s
elements are chosen to represent a clique, each node from these sets will be connected because the
sets are mutually exclusive. Further, since the sets in the exact cover cover every element in ∪Sj ,
there will be a clique of size |{ui}|.
⇐ Suppose there is a clique of size k on G. Further suppose G was constructed as defined above.
By our construction, edges are only between elements of the same set, and between elements of
mutually exclusive sets. Thus, in order for there to be a clique of size k, there must be a subset of
sets that is disjoint and that covers k elements. Since k is defined to equal |{ui}|, each element is
covered by the sets in the clique, thus there is an exact cover on {Sj}.

24

4.16 Feedback Arc Set ≤p Set Covering

Algorithm for Feedback Arc Set

I 7→ f(I) → Algorithm for Set Covering
→ x 7→ h(x)

→ N.S. 7→ N.S.

Feedback Arc Set
Input: A directed graph H = (V,E) and a positive integer k
Property: There exists S ⊆ E such that every directed cycle of H contains an arc in S and |S| ≤ k

Set Covering
Input: A finite family of sets {Sj} and a positive integer k
Property: There existsa subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj

Details Given an instance I = (G, k ∈ N) of feedback arc set, we form an instance of set
covering as follows: Let {a1, ..., an} be the set of cycles in our graph, and {ei} be the edges. Let
{Sj} = {ai | ai contains ej}, and let k = k.
Given a solution, s = {Th} of set covering, let h(s) = S = {ej | Sj ∈ {Th}}.
Note that finding cycles is known to be fast, and constructing {Sj} as described here is of complexity
O(|ej |

∑
|{ai}|).

Theorem 4.18. An instance I of feedback arc set has a solution exactly when f(I) has a solution
in set covering.

Proof. ⇒ Assume that feedback arc has a solution. In that case, there is a set S of size ≤ k so
that every cycle contains an arc in S. Now consider {Th} = {Sj | ej ∈ S}, which is of size k. Given
a ∈ {ai}, there must be some ej ∈ S contained in it, so a ∈ {Th}.
⇐ Conversely, suppose that our instance of set covering has a solution. Consider the set of edges
indexed by it to be S. Given a cycle in our graph, we must have some element in S appear in the
cycle, or we would not have a proper cover. Thus we have a solution for feedback arc set of size
|S| = k.

4.17 Feedback Node Set ≤P Set Covering

Algorithm for Feedback Node Set

I 7→ f 7→ f(I) 7→ Algorithm for Set Covering 7→ S 7→ h 7→ h(s)

Feedback Node Set
Input: A directed graph H = (V,E) and a positive integer k
Property: There exists R ⊆ V such that every directed cycle of H contains a vertex in R and
|R| ≤ k

Set Covering
Input: A finite family of sets {Sj} and a positive integer k
Property: There existsa subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj

25

Details -Let I = (G = (V,E), k), where G is a directed graph, and k is an integer. Then f will
define {Sj} a family of sets. Each vj ∈ V will correspond to a set, Sj ∈ {Sj}, with the elements
of the set being the cycles in G that the node represented by the set is a part of in G. f will also
define an integer, k = k.
-Suppose there is a polynomial time algorithm for Set Covering, that returns solution S, a subset
of sets in Sj that represent a set covering of size k on Sj .
-h(S) will take in solution S, a subset of sets in Sj that represents a set covering of size k on Sj .
Since each set in Sj represents a node, each set in S will be converted back to the node that it
represents on G, and added to set R. The set R will be returned.
-No solution implies no solution.

Theorem 4.19. G = (V,E) has a Feedback Node Set iff {Sj}, constructed as defined above, has a
Set Covering of size k.

Proof. ⇒ Suppose there is a Feedback Node Set of size k on G. That is, there are k nodes that
are contained in every cycle in G. By our construction, sets in Sj are constructed for each node in
G, with elements being the cycles that that node appears in. Thus, since the elements of Sj are
cycles, ∪Sj is the set of all cycles on G. Therefore, if the same nodes in the Feedback Node Set are
chosen for the set covering, k sets can be chosen such that every element in ∪Sj is chosen.
⇐ Suppose there is a set covering on S of size k. Since the sets represent nodes and the elements
represent the cycles that node is in, there is some set of k nodes contained in each cycle, which, by
definition, is a Feedback Node Set.

4.18 Max Cut ≤P Steiner Tree

Algorithm for Max Cut

I 7→ f 7→ f(I) 7→ Algorithm for Steiner Tree 7→ S 7→ h 7→ h(s)

Max Cut
Input: A graph G = (N,A), a weight function w : A→ Z and a positive integer W
Property: ∃S ⊆ N such that

∑
{u,v}∈A,u∈S,v/∈S w({u, v}) ≥W

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

Details -Let I = (G = (V,E), k ∈ Z+,W : E 7→ Z), where G is an undirected, weighted graph, k is
a positive integer, and W is a weighting function for the edges of G. Then f will define a weighted
graph, H = (N,A), with Vertexes,
N = {ni|0 ≤ i ≤ 1} ∪ {Si|∀Vi ∈ V } ∪ {Wi|∀Vi ∈ V } ∪ {< i, j > |Vi ∈ V, Vj ∈ V, i 6= j} and Edges,
A = {< n0, n1 >} ∪ {< n1, Si > |Si ∈ N} ∪ {< Si,Wi > |Si,Wi ∈ N} ∪ {< Wk, < i, j >> |k = i or
k = j}, with weighting function W : A 7→ Z defined as follows. W (< n0, n1 >) = 1,W (< n1, Si >=
k − 1),W (< Si,Wi >) = −Σw(Vi) (ie the negative of the sum of all the edges incident on Vi ∈ V),
W (< Wk, < i, j >>) = w(Vi, Vj) if < i, j >∈ E, and W (< Wk, < i, j >>) = 0 if < i, j > 6∈ E. f
will also define an integer, l = 0. f will also define a set R ⊆ N = {n0, n1}
-Suppose there is a polynomial time algorithm for Steiner Tree, that returns solution S, a subtree

26

of H that contains each vertex in R, with weight ≤ l.
-h(S) will take in solution S, a subtree of H that represents a Steiner Tree. h(S) will loop through
each edge of the solution, and for each edge of negative weight, will find the corresponding Vi that
is represented by the edge of negative weight labeled < Wi, Si >. It will then add Vi to the solution
set, R. R will then be returned.
-No solution implies no solution (if we can find no solution for steiner tree).

Theorem 4.20.

Proof. ⇒
⇐

4.19 Exact Cover ≤P Satisfiability

Algorithm for Exact Cover

I 7→ f 7→ f(I) 7→ Algorithm for Satisfiability 7→ S 7→ h 7→ h(s)

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property:
∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S then xi /∈ S, and if xi ∈ S then xi /∈ S and
S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Details -Let I = {Sj}, a family of subsets with elements ui. Then f will define Clauses C1, C2, . . . Ck
and literals x1, x2, . . . xj . Each element, ui ∈ ∪Sj will have a corresponding clause Ci. If ui ∈ Sj ,
then xj ∈ Ci. Further, if Ci has 2 or more members, then there will be Clauses added containing
the negation of every combination of 2 literals in Ci. For example, if Ci = (1 ∪ 2 ∪ 3), the Clauses
added will be Cl = (1̄ ∪ 2̄), Cm = (1̄ ∪ 3̄), Cn = (2̄ ∪ 3̄).
-Suppose there is a polynomial time algorithm for Satisfiability, that returns solution S, a satisfying
assignment for the literals xj in Clauses Ck.
-h(S) will take in Solution S, a satisfying assignment for the literals xj in Clauses Ck. Then h will
loop through S, and if xj is set to be true, it will add the corresponding set Sj to solution set R.
R will then be returned.
-No solution implies no solution.

Theorem 4.21. {Sj} has an exact cover iff Clauses C1, C2, . . . Ck with literals x1, x2, . . . xj, con-
structed as defined above, has a satisfying assignment.

Proof. ⇒ Suppose we have an exact cover on sets {Sj}. That is, there is some family of subsets,
Th, that are disjoint such that ∪Th = ∪Sj . Based on our construction, each element in ∪Sj has a
clause with the literals of the clause being the sets that the elements ui appears in. Further, for
each clause of size 2 or more are clauses containing each combination of 2 literals in the original

27

clause that contains the negation of these literals. Thus, if each set that is part of the exact cover is
chosen to be true, then each clause representing an element will be satisfied. Further, if the literals
representing the remaining sets are chosen to be false, the negation clauses will be satisfied, as the
remaining clauses only have literals that represent sets not chosen in the exact cover left, and since
they are negated, they must be set to false. Thus, there is a satisfying assignment for the Clauses.
⇐ Suppose we have a satisfying assignment for Clauses C1, C2, . . . Cp. Based on our construction,
the clauses represent elements, ui, of ∪Sj and the literals represent sets in Sj . Each clause has
literals representing the sets that the corresponding clauses element appears in. Further, each clause
that has 2 or more literals has corresponding clauses containing the negation of every corresponding
combination of 2 literals from the original clause. Since each element has a clause, and each of these
clauses must be satisfied, we know that each element has at least one set that can be chosen that
contains the element. Further, in order for the clauses with negated literals to be satisfied, each
other literal that is not chosen must be set to false, as they will all appear in a set with the chosen
literal. For example, if the clause representing an element is, (A ∪B ∪C), the negated clauses will
be (Ā∪ B̄), (Ā∪ C̄), (B̄ ∪ C̄). If A is set to be true, both B and C must be set to false to satisfy C.
However, we already know that we have a satisfying assignment, which means each element must
only have exactly one set that can be chosen such that ∪Sj = ∪Th and Th is disjoint. By definition,
that’s an exact cover on Sj .

4.20 Hitting Set ≤P Satisfiability

Algorithm for Hitting Set

I 7→ f 7→ f(I) 7→ Algorithm for Satisfiability 7→ S 7→ h 7→ h(s)

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property:
∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S then xi /∈ S, and if xi ∈ S then xi /∈ S and
S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Details -Let I = {Sj}, a family of subsets with elements ui. Then f will define Clauses C1, C2, . . . Ck
and literals x1, x2, . . . xj . Each set, Sj , will have a corresponding clause Ci. If ui ∈ Sj , then xi ∈ Cj .
Further, if Cj has 2 or more members, then there will be Clauses added containing the negation of
every combination of 2 literals in Cj . For example, if Cj = (1 ∪ 2 ∪ 3), the Clauses added will be
Cl = (1̄ ∪ 2̄), Cm = (1̄ ∪ 3̄), Cn = (2̄ ∪ 3̄).
-Suppose there is a polynomial time algorithm for Satisfiability, that returns solution S, a satisfying
assignment for the literals xj in Clauses Ck.
-h(S) will take in Solution S, a satisfying assignment for the literals xj in Clauses Ck. Then h will
loop through S, and if xj is set to be true, it will add j to solution set R. R will then be returned.
-No solution implies no solution.

28

Theorem 4.22. {Sj} has a hitting set iff Clauses C1, C2, . . . Ck with literals x1, x2, . . . xi, con-
structed as defined above, has a satisfying assignment.

Proof. ⇒ Suppose we have a hitting set on sets {Sj}. That is, there is some set W , such that
|W ∩ Sj | = 1 for all Sj ∈ {Sj}. Based on our construction, each set in {Sj} has a clause with the
literals of the clause being the elements of Sj . Further, for each clause of size 2 or more are clauses
containing each combination of 2 literals in the original clause that contains the negation of these
literals. Thus, if each literal representing an element that is part of W is set to be true, then each
clause representing a set in {Sj} will be satisfied. Further, if the literals representing the remaining
elements 6∈ W are set to be false, the negation clauses will be satisfied, as the remaining clauses
only have literals that represent elements 6∈ W , and since they are negated, they must be set to
false. Thus, there is a satisfying assignment for the Clauses.
⇐ Suppose we have a satisfying assignment for Clauses C1, C2, . . . Cp. Based on our construction,
the clauses represent sets, Sj ∈ {Sj} and the literals represent the elements of the corresponding set.
Further, each clause that has 2 or more literals has corresponding clauses containing the negation of
every corrresponding combination of 2 literals from the original clause. Since each set has a clause,
and each of these clauses must be satisfied, we know that each set has at least one element that can
be chosen that is part of W. Further, in order for the clauses with negated literals to be satisfied,
each other literal that is not chosen to be true to satisfy the set clauses must be set to false, as they
will all appear in a set with the chosen literal. For example, if the clause representing an element
is, (A∪B ∪C), the negated clauses will be (Ā∪ B̄), (Ā∪ C̄), (B̄ ∪ C̄). If A is set to be true, both B
and C must be set to false to satisfy each of the clauses. However, we already know that we have a
satisfying assignment, which means that each set must only have exactly one element that can be
chosen to be in W such that |W ∩ Sj | = 1. By definition, that’s a hitting set on Sj .

4.21 Satisfiability ≤p Knapsack

Algorithm for Satisfiability

I 7→ f(I) → Algorithm for Knapsack
→ x 7→ h(x)

→ N.S. 7→ N.S.

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property:
∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S then xi /∈ S, and if xi ∈ S then xi /∈ S and
S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

Details Given an instance I = (C1, C2, ..., CP) of Satisfiability, we form an instance f(I) of knapsack

as follows: Let m be (the maximum number of literals that appear in a single Ci) + 1. Assign to
each Ci the label mi. Each xj for knapsack will correspond to the variables in Satisfiability in the

29

obvious way. We define aj to be: ∑
Ci|xj∈Ci

mi

−
 ∑
Ci|x̄j∈Ci

mi


We let

b =
(
m0 +m1 + · · ·+mP

)
−

∑
x̄j

∑
Ci|x̄j∈Ci

mi


Additionally, for each Ci, we add (m - 1) DONT NEED THAT MANY filler variables xfiller−i−h
with associated afiller−i−h = −mi.
We map a solution, S, via h(S) using the assignment of xi to select true literals.

Theorem 4.23. There is a solution to an instance I of Satisfiability ⇐⇒ there is a solution to
f(I) in Knapsack.

Proof. Label each clause with a distinct power of m by Ci → mi. For every literal, σ, map σ to
the sum of powers of m for each clause σ appears in. We use this to require an exact satisfying
argument for Satisfiability that has no conflicting literals as:

(1− x1)(
∑

Ci|x̄1∈Ci

mi) + x1(
∑

Ci|x1∈Ci

mi) + · · ·+ (1− xr)(
∑

Ci|x̄r∈Ci

mi) + xr(
∑

Ci|xr∈Ci

mi)

=
(
m0 +m1 + · · ·+mP

)
Note that this holds exactly when

x1(
∑

Ci|x1∈Ci

mi −
∑

Ci|x̄1∈Ci

mi) + · · ·+ xr(
∑

Ci|xr∈Ci

mi −
∑

Ci|x̄r∈Ci

mi)

= m0 + · · ·+mP −

∑
x̄j

∑
Ci|x̄j∈Ci

mi


Which shows that an exact solution for Satisfiability occurs exactly when the second equality holds.
Because we seek any solution for Satisfiability, we relax the constraints to allow for subtracting up
to (m - 1) copies of mi for each Ci on the left side of the first equation. Because of our choice of base,
we do not run the risk of overlapping by subtracting too much, and we retain the requirement that
every clause is satisfied. We have added the possibility for a clause to be over-satisfied. Readjusting
the second equation to compensate for this yields the formula we provide for knapsack.

4.22 Satisfiability ≤p Feedback Node Set

Algorithm for Satisfiability

I 7→ f(I) → Algorithm for Feedback Node Set
→ x 7→ h(x)

→ N.S. 7→ N.S.

30

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property:
∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S then xi /∈ S, and if xi ∈ S then xi /∈ S and
S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Feedback Node Set
Input: A directed graph H = (V,E) and a positive integer k
Property: There exists R ⊆ V such that every directed cycle of H contains a vertex in R and
|R| ≤ k

Details First verify no clauses contain conflicting literals. Now, given an instance I = (C1, · · · , CP)
of Satisfiability, we construct an instance f(I) of feedback node set as follows: For a fixed Cj , let φJ
be a simple cycle on all of the literals in Cj . ADD NOTATION EXPLANATION

N = {x1, · · · , xr, x̄1, · · · , x̄r}
E = {< xi, x̄i >}
∪ {< x̄i, xi >}
∪ {< φJ(σ1), φJ(σ2) >,< φJ(σ2), φJ(σ3) >,

· · · , < φJ(σn−1), φJ(σn) >,< φJ(σn), φJ(σ1) >| σi are all of the literals in Cj}
k = |{xi}|

Additionally, for any clauses with a single literal σ, add an auxillary node σ0 and the edges {<
σ, σ0 >,< σ0, σ >}.
Given a solution, S for Feedback Node Set, let h(S) be the set of literals in the image of S under
the forgetful map (that is, h(σ0) = σ and otherwise h(σ) = σ).

Theorem 4.24. There is a solution for an instance I of Satisfiability ⇐⇒ there is a solution for
f(I) in Feedback Node Set.

Proof. ⇒ Let C1, · · · , CP be an instance of Satisfiability with solution S. Construct an instance of
feedback node set as above. Let R = {x̄i ∈ S}∪ {xi | x̄i /∈ S}. Note first that S ⊆ R. Furthermore,
we observe that |R| = |{xi}| = k. We now verify that for every cycle in our graph, there is some n ∈
R contained in it. For every cycle between xi, x̄i we have a node in R from construction. We consider
larger cycles, of which there are two types. True clause cycles, and incidental cycles. For each true
clause cycle, of course one of the satisfying literals is already included in R. Incidental cycles are
formed when edges between nodes allow for a cycle not representing a set of literals that appear in
a clause together, and not between complementary literals. For such cycles, each edge represents a
pair of literals which appear in some clause together. Assume for a contradiction that none of the
literals in an incidental cycle I are in S. In that case, we can modify our instance of Satisfiability to
include the clause

∧
σ∈I σ̄ without consequence. As a matter of fact, this is not a contradiction but

a valid counterexample. Consider (a∨b∨c∨d)∧(a∨b∨d)∧(b∨c∨d)∧(a∨c∨d)∧(¬a)∧(¬b)∧(¬c),
where an incidental cycle may form between a, b, and c and have no satisfying arguments possible
to use within the cycle.

31

4.23 Undirected Hamiltonian Circuit ≤p Hitting Set

Algorithm for Undirected Hamiltonian Circuit

I 7→ f(I) → Algorithm for Hitting Set
→ x 7→ h(x)

→ N.S. 7→ N.S.

Undirected Hamiltonian Circuit
Input: A graph G
Property: G has a cycle which includes each vertex exactly once.

Hitting Set
Input: A family {Ui} of subsets of {s1, s2, . . . sr}
Property: there is a set W such that for each i, |W ∩ Ui| = 1

Details Given an instance I = (N, A) of Undirected Hamiltonian Circuit, we form instance f(I) of
hitting set as follows:

SJ = {{{vi, ui+1} | u ∈ N, u 6= v} | v ∈ N} | i ∈ {1, ..., |N |} (1)

∪ {{{vi, ui+1} | u ∈ N, i ∈ {1, · · · , |N |}} | v ∈ N} (2)

∪ {{{ui, vi+1(mod|N |)} | {u, v} ∈ A} | i ∈ {1, · · · , |N |}} (3)

Given a solution, S = {{v1, v2}, {v2, v3}, · · · , {v|N |, v1}} for hitting set, we let h(S) be the sequence
of vi provided in our solution.

Theorem 4.25. There is a solution for I in Undirected Hamiltonian Circuit ⇐⇒ there is a
solution for f(I) in hitting set.

Proof. We use the fact that a graph (N, A) has an Undirected Hamiltonian Circuit ⇐⇒ there
is a sequence, n1n2 · · ·n|N | so that each ni is distinct, and for each nini+1(mod|N |) the vertices are
adjacent. We proceed to verify our construction.

Our first type of set requires that for each i ∈ {1, · · · , |N |} exactly one vertex is chosen for
that i. The second type of set requires that for each vertex, exactly one place is selected. This
gives us a simple permutation of our nodes. The third requirement verifies that each level selected
as i → i + 1(mod|N |) corresponds to an edge in our graph. This restriction forces the selected
permutation to exist ⇐⇒ there is an Undirected Hamiltonian Circuit in our graph from our
previously established criterion.

5 Conclusions

I haven’t written this section, or future work yet because what we say will largely depend on if we
end up with a cycle or not. I am happy to write something up when we find a cycle/give up.

32

6 Future Work

7 Appendix

7.1 Other Edges in the Cycle

7.1.1 Chromatic Number ∝ Clique Cover

Algorithm for Chromatic Number

I 7→ f 7→ f(I) 7→ Algorithm for Clique Cover 7→ S 7→ h 7→ h(s)

Chromatic Number
Input: A graph G = (N,E) and a positive integer k
Property: there is a function φ : N → Zk such that if u and v are adjacent then φ(u) 6= φ(v)

Clique Cover
Input: A graph G′ = (N ′, E′) and a positive integer `
Property: N ′ is the union of ` or fewer cliques

Details -Let I = (G = (V,E), k) where G is a graph and k is a positive integer. Then f will create
a new Graph, G′, equal to the complement of G. f will also define an integer l = k.
-Suppose there is a polynomial time algorithm for Clique Cover, that returns solution S, a set of
cliques representing a Clique Cover of size l on G′.
-h(S) will take in a set of cliques, S, and define a function, φ. For each clique in S, h(S) will map φ
to the same element for each node in the same clique. φ will map each clique to a different result.
φ will be returned.
-No solution implies no solution.

Theorem 7.1. Graph G = (V,E) has a chromatic number, k, iff its complement, G′, has a clique
cover of size l = k.

Proof. ⇒ Suppose G has a chromatic number, k. That is, there is a function, φ, that colors the
vertices of G with k colors such that no two adjacent vertices have the same color. Thus, no two
vertices who share the same color can have any edges between them on G. Now, take G′, the
complement of G, which includes every edge that wasn’t in G, and doesn’t include any edge that
was in G. In this graph, vertices of the same color now must have an edge connecting them, as
there were no edges between vertices of the same color in G. Thus, there is now a clique between
each group of vertices with the same color on G′. Since there are k colors on G, G′ has k cliques,
thus G′ has a clique cover of size k = l.
⇐ Suppose G′, the complement of G, has a clique cover of size k. By definition, a clique contains
edges between every member of the clique. In addition, even though a vertex, v ∈ V can be in
multiple cliques on G′, each vertex can only be assigned to one clique in order for there to be a
clique cover on G′. Therefore, v can be assigned to either of the cliques it is a part of, as long as
there is a still a clique cover on G′ of size k. Since G′ is the complement of G, none of the vertices
that formed cliques on G′ will have any edges between each other on G. Thus, if the vertices that
formed the cliques of the clique cover on G′ are given the same color by φ on G, then no adjacent
vertices will have the same color. Thus, G has a coloring of size k.

33

7.1.2 Knapsack ∝ Partition

Algorithm for Knapsack

I 7→ f 7→ f(I) 7→ Algorithm for Partition 7→ S 7→ h 7→ h(s)

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

Partition
Input: (c1, c2, . . . cs) ∈ Zs
Property: there is an I ⊆ {1, 2, . . . s} such that

∑
h∈I ch =

∑
h/∈I ch

Details -Let I = (a1, a2, . . . ar, b), where a is a list of integers and b is an integer. Then f will define
a set, c, with size s = r + 2. ci = ai, with 1 ≤ i ≤ r. cr+1 = b+ 1, and cr+2 = (Σri=1ai) + 1− b.
-Suppose there is a polynomial time algorithm for Partition that returns solution S, a set such that
S ⊆ {1, 2, . . . s} and Σh∈Sch = Σh6∈Sch.
-h(S) will take in set S, a solution to Partition. It will loop through S, adding elements that
represent elements of a to a new set R. Any vertices that were added to the set S as part of the
construction and that do not represent elements of C are not included in R. h(S) will then define
a new set, x, of size r. For 1 ≤ i ≤ r, xi = 1 if ai ∈ R, xi = 0 otherwise. x will then be returned.
-No solution implies no solution.

Theorem 7.2. a = (a1, a2, . . . ar) and b have a 0-1 solution for Σajxj = b iff set c, of size s, both
constructed as defined above, have a set I ⊆ {1, 2, . . . s} such that Σh∈Ich = Σh6∈Ich.

Proof. ⇒ Suppose that a = (a1, a2, . . . ar) and integer b have a set x of size r that has a 0-1 solution
such that Σarxj = b. That is, there is some subset, S, S ⊆ a such that Σh∈Sah = b. Based on our
construction, c is equivalent to a for all i such that 1 ≤ i ≤ r. Thus, that same subset S, can be
used, with Σh∈Sah = b and Σh 6∈Sah = Σri=1ai− b. However, in c there are two additional elements,
Ir+1 = b+ 1 and Ir+2 = (Σri=1ai) + 1− b. If Ir+1 is added to h 6∈ S and Ir+2 is added to h ∈ S, we
now have Σh∈Sch = b + Σri=1ai + 1 − b and Σh 6∈Sch = Σri=1ai − b + b + 1. Simplify, and we have
Σh∈Sch = Σri=1ai + 1 = Σh6∈Sch. By definition, c has a partition, I, such that Σh∈Ich = Σh6∈Ich.
⇐ Suppose that set c, of size s, as constructed above, has a set, I ⊆ {1, 2, . . . s} such that Σh∈Ich =
Σh 6∈Ich. Based on our construction, s = r+ 2, and for 1 ≤ i ≤ r, ci = ai. Additionally cr+1 = b+ 1
and cr+2 = (Σri=1ai)+1− b. The remaining elements have value Σri=1ai. If cr+1 and cr+2 are in the
same half of the partition, cr+1 + cr+2 = Σri=1ai + 1− b+ b+ 1 = Σri=1ai + 2 > Σri=1ai. Thus, there
is no possible partition if cr+1 and cr+2 are both included in the set I, or if both are not included
in the set I, so exactly one must be included. (i.e cr+1 and cr+2 must be in different halves of the
partition). However, a partition was supposed to exist, so we have
b+ 1 + Σh 6∈Sah = (Σri=1ai) + 1− b+ Σh∈Sah
2b+ Σh6∈Sah = Σri=1ai + Σh∈Sah
2b+ Σh6∈Sah + Σh∈Sah = Σri=1ai + 2Σh∈Sah
By definition, Σh 6∈Sah + Σh∈Sah = Σri=1ai. Thus,
2b+ Σri=1ai = Σri=1ai + 2Σh∈Sah
2b = 2Σh∈Sah

34

b = Σh∈Sah
Thus, if the elements ai ∈ a∩ai ∈ S are given a 1 value for xi ∈ x, and the elements ai ∈ a∩ai 6∈ S
are given a 0 value for xi ∈ x, then xj will be a 0-1 solution for Σarxj = b.

7.1.3 Clique ∝ Node Cover

Algorithm for Clique

I 7→ f 7→ f(I) 7→ Algorithm for Node Cover 7→ S 7→ h 7→ h(s)

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Details
-Let I = (G = (V,E), k), where G is a graph and k is a positive integer. Then f will define a

graph G′ that is equal to the complement of G. (i.e. all of the nodes in G′ are the same as in G,
edges that did not appear in G appear in G′, and edges that did appear in G do not appear in G′).
f will also define a positive integer, l, that is equal to |V | − k.
-Suppose that there is a polynomial time algorithm for Node Cover, that returns solution S, which
is a set of Nodes, S, that represents a Node Cover of G′.
-h(s) will take in a set, S, of Nodes representing a Node Cover, and use the original set of Nodes,
V , from the original graph G. h will define a new set of Nodes, N = V − S, and return this. (i.e.
the set of Nodes that are in V , but that are not in S.
-No solution implies no solution

Theorem 7.3. G = (V,E) has a clique of size k iff there is a node cover of size |V | − k on G′.

Proof. ⇒ Suppose G = (V,E) has a clique of size k. Thus, G′ will not have any edges between the
members of the clique (v1, v2, . . . vk). Each vertex in the clique (v1, v2, . . . vk) will be accessible in
G′ by any vertices they are not connected to in G. (If G is completely connected, there will be no
edges in G′, so the empty set will be a node cover) Therefore, if the vertices not in the clique are
chosen to be in the Node Cover, all edges will be covered and the size will be |V | − k.
⇐ Suppose there is a node cover, S, on G′ of size l = |V | − k. Since S is a node cover, all edges
can be accessed by the vertices in S. Thus, no edges in the set in the set V − S can be connected
to each other in G′, or S wouldn’t be a valid node cover. Thus, the vertices in V − S form a clique
of size |V | − |S| on G. |S| is defined to be l, or |V | − k, so the size of the clique is
|V | − (|V | − k) = |V | − |V |+ k,= k.
Thus, if there is a Node Cover, S, on G′ of size |V | − k, then there is a clique on G of size k.

7.1.4 Exact Cover ∝ Hitting Set

Algorithm for Exact Cover

35

I 7→ f 7→ f(I) 7→ Algorithm for Hitting Set 7→ S 7→ h 7→ h(s)

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Hitting Set
Input: A family {Ui} of subsets of {s1, s2, . . . sr}
Property: there is a set W such that for each i, |W ∩ Ui| = 1

Details -Let I = {Sj}, a family of subsets of a set {ui, i = 1, 2, . . . t}. Then f will define a family of
subsets, {Ui}, such that sj ∈ Ui iff ui ∈ Sj . (i.e. {Ui} will contain i sets, i = | ∪ Sj |, with elements
representing the sets that each element represented by Ui are in in {Sj}).
-Suppose there is a polynomial time algorithm for Hitting Set, that returns Solution S, a set such
that, for each Si ∈ {Ui}, |W ∩ Ui| = 1.
-h(S) will take in a set of integers, S, representing a Hitting Set on {Ui}. This same set can be
returned, as the same integers represent the indices on {Sj} that form an exact cover.
-No solution implies no solution

Theorem 7.4. {Sj} has an exact cover iff {Ui}, as constructed above, has a hitting set.

Proof. ⇒ Suppose {Sj} has an exact cover. By our construction, each element in ∪Sj gets a set
in {Ui}, with elements of Ui being the sets in {Sj} that the element represented by Ui appears
in. Suppose, for the sake of contradiction, that Ui does not have a hitting set. That is, for every
W ∈ U there is a Ui where |W ∩Ui| 6= 1. Since each Ui ∈ {Ui} represents elements, this means that
some element, ui, appears in multiple or zero sets, Sj , and there is no group of sets, Sj ∈ {Ui},
that can be chosen in {Sj} such that this element does not appear exactly once. Thus, there is no
exact cover in {Sj}, which contradicts what was previously supposed.
⇐ Suppose {Ui} has a hitting set. By our construction, each set in {Ui} represents an element
in ∪Sj , with elements of Ui being the sets that the elements represented by it appears in in {Sj}.
There exists some W , such that |W ∩ Ui| = 1 for all Ui ∈ {Ui}. Since the sets in {Ui} represent
elements in {Sj}, and each element in Ui represents the sets that element is in in {Sj}, |W ∩Ui| = 1
implies that the subset of sets represented by the elements of W can be chosen such that every
element in {Sj} appears exactly once, which by definition is an exact cover for {Sj}.

7.1.5 Clique ∝ Set Packing

Algorithm for Clique

I 7→ f 7→ f(I) 7→ Algorithm for Set Packing 7→ S 7→ h 7→ h(s)

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

36

Set Packing
Input: A family of sets {Sj} and a positive integer `
Property: {Sj} has ` mutually exclusive sets.

Details -Let I = (G = (V,E), k), where G is a graph and k is a positive integer, where V =
{1, 2, . . . , k}. Then f will define {Sj}, a family of n sets, with elements...
Si = {{i, j} | {i, j} 6∈ E}, 1 ≤ i ≤ n (i.e. each node gets a set, with elements representing edges that
aren’t in G). f will also define an integer, l, with l = k.
-Suppose that there is a polynomial time algorithm for Set Packing that returns solution S, which
is a family of sets representing mutually exclusive sets of {Sj}.
-h(s) will take the sets in S, and convert them back to their respective nodes from G. Each node
will be added to the subgraph, H, of G. For example, if S = {S1, S2, S4}, h(s) will return the
subgraph H = (V,E) with V = {1, 2, 4}.
-No Solution implies no solution.

Theorem 7.5. G = (V,E) has a clique of size n iff there are k mutually exclusive sets in {Sj} as
defined above.

Proof. ⇒ Suppose G has a clique of size k. Let {v1, v2, . . . vk} be the vertices in this clique. If i 6= j
and vi, vk ∈ {v1, v2, . . . vk}, then Si ∩ Sj = 0, or there would be two members of the clique that do
not have an edge between them, which is impossible. Thus, Si∩Sj = 0, i 6= k, vi, vk ∈ {v1, v2, . . . vk}.
By definition, this means there is a set packing of size k on {Sj}.
⇐ Suppose there are k mutually exclusive sets in {Sj}. WLOG, let S1, S2, . . . Sk, be the sets that
form the exact cover in {Sj}. Let G be the graph constructed as directed above. Suppose, for
contradiction, there is no clique of size k in G, between vertexes 1 and k. Therefore, for vertices i
in 1 ≤ i ≤ k, there exists a vertex j and a vertex i with no edge between them. Therefore, (i, j)
will be added to Si and Sj . Thus, Si and Sj are not mutually exlusive, as both contain the edge
(i, j). This contradicts what was previously supposed.

7.1.6 Satisfiability ∝ Satisfiability With At Most 3 Literals Per Clause

Algorithm for Satisfiability

I 7→ f 7→ f(I) 7→ Algorithm for Satisfiability With At Most 3 Literals Per Clause 7→ S 7→ h 7→ h(s)

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property: C1 ∧C2 ∧ · · · ∧Cp is satisfiable: if ∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S
then xi /∈ S, and if xi ∈ S then xi /∈ S and S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Satisfiability With At Most Three Literals Per Clause
Input: Clauses D1, D2, . . . Dr, each consisting of at most 3 literals from {u1, u2, . . . um, u1,
u2, . . . um}
Property: {D1, D2, . . . Dr} is satisfiable

Details -Let I = ((C1, C2, . . . Cp), (x1, x2, . . . xn)) where C are clauses and x are literals. For every
clause, Cj in I with more than 3 literals, we say Cj = σ1 ∪ σ2 ∪ . . . σm. Replace each Cj with

37

(σ1 ∪ σ2 ∪ u1)(σ3 ∪ . . . σm ∪ ū1)(σ̄3 ∪ u1) . . . (σ̄m ∪ u1)
-Suppose there is a polynomial time algorithm for Satisfiability With at Most 3 Literals Per Clause
that returns solution S, a satisfying assignment for f(I).
-h(S) will take in the satisfying assignment for f(I), remove all of the variables labeled ”u”, and
return what is remaining in the satisfying assignment.
-No Solution implies no solution.

Theorem 7.6. Clauses C1, C2, . . . Cp are satisfiable with literals x1, x2, . . . xn iff Clauses D1, D2, . . . Dk

with literals x1, x2, . . . xn, u1, . . . ut, constructed as directed above, are satisfiable.

Proof. ⇒ Suppose Clauses C1, C2, . . . Cp are satisfiable with literals x1, x2, . . . xn. By induction on
n, the number of clauses with more than 3 literals, we can show that our instance of Satisfiability
With at Most 3 Literals Per Clause will also be satisfied.
Base Case: n=1
Suppose Clauses C1, C2, . . . Cp are satisfiable and have exactly one clause with more than 3 literals.
Since the clauses with 3 or less literals are kept the same in f(I), they will still be satisfiable in
f(I) if the same literals are chosen. Let Cj = (x1, x2, . . . xm) be the clause, satisfied in I, with
more than 3 literals. At least one of these literals must be satisfied for Cj to be true. Based on the
construction, and WLOG, if x1 and x2 are false, then u1 can be set to true to satisfy the clause.
Then, since Cj is satisfiable, even though ū1 is false in the next clause, the literal that satisfies Cj
is guaranteed to be in it. Thus, the new construction will be satisfiable, and the same literals can
be used to satisfy f(I).
Inductive Hypothesis
Suppose I is satisfiable and has n clauses with more than 3 literals. Further suppose that the
instance of Satisfiability With at Most 3 Literals Per Clause that is constructed from I is satisfiable.
Inductive Step
Suppose I is satisfiable and has n + 1 clauses with more than 3 literals. In our construction of
SatisfiabilityWithatMost3LiteralsPerClause, the n clauses with more than 3 literals from our
inductive step will have the same construction, and will be satisfied by Satisfiability With at Most 3
Literals Per Clause, as they were satisfied in our Inductive Hypothesis. Let Cj = (x1, x2, . . . xm) be
the remaining clause, satisfied in I, with more than 3 literals. At least one of these literals must be
satisfied for Cj to be true. Based on the construction, and WLOG, if x1 and x2 are false, then u1

can be set to true to satisfy the clause. Then, since Cj is satisfiable, even though ū1 is false in the
next clause, the literal that satisfies Cj is guaranteed to be in it. Thus, the new construction will be
satisfiable, and the same literals can be used to satisfy f(I). ⇐ Suppose f(I) = ((D1, D2, . . . Dk)
with literals (x1, x2, . . . xn, u1, . . . ut)) is satisfiable, and was constructed as directed above. Further
suppose Clauses D1, D2, . . . Dk were constructed based on the instructions above, as there is at least
one clause Cj from I that had more than 3 literals. Thus, D1 = {x1, x2, u1} and D2 = {x3, x4, ū1}.
For f(I) to be satisfiable, both D1 and D2 must be satisfiable. Since u1 ∈ D and ū1 ∈ D2, u1 can
only be used to satisfy one of these clauses. Thus, one of x1, x2, x3, x4 must be true in order for D1

and D2 to be satisfied. Since D1 and D2 were constructed from the clause Cj = {x1, x2, x3, x4},
and one of these must be satisfied, Cj must be satisfied as with any other clauses with greater than
3 literals. Further, since any clauses in f(I) with less than 4 literals per clause were kept identical
from I, they will be satisfied as well. Thus, I is satisfiable if f(I) is satisfiable and was constructed
as directed above.

38

7.1.7 Exact Cover ∝ 3-Dimensional Matching

Algorithm for Exact Cover

I 7→ f 7→ f(I) 7→ Algorithm for 3-D Matching 7→ S 7→ h 7→ h(s)

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

3-Dimensional Matching
Input: U ⊆ T × T × T where T is a finite set
Property: there is a set W ⊆ U such that |W | = |T | and no two elements of W agree in any
coordinate

Details -Let I = {Sj}, a family of subsets. Then f will define a set T = {< i, j > |ui ∈ Sj}. f
will also define α, an arbitrary one-to-one function from {ui} into T . f will also define π : T 7→ T ,
a permutation such that for each fixed j, {< i, j > |ui ∈ Sj} is a cycle of π. (i.e π creates a cycle
between the elements ui in a particular set in {Sj}. For example, if S2 = {1, 2, 5}, π could create
a cycle as follows: (1, 2) 7→ (2, 2) 7→ (5, 2) 7→ (1, 2)). f will define a set, U = {α(ui), < i, j >,<
i, j >> | < i, j >∈ T} ∪ {< β, σ, π(σ) > | for all i, β 6= α(ui)}
-Suppose there is a polynomial time algorithm for 3-D Matching, that returns solution S, such that
|S| = |T |, and such that the elements of S are mutually exclusive at each coordinate in the elements
of S.
-h(S) will take in solution S, a set representing a solution to 3-D Matching. Then h will create
a set, R. h will loop through S, determining if each elements second and third coordinate pairs,
< i, j >, and equal to each other. If they are equal, then h will add j to the set R if it is not already
in R. R will be returned.
-No solution implies no solution.

Theorem 7.7. {Sj} has an exact cover iff sets T and U , constructed as defined above, have a 3-D
Matching. That is, there is some subset S ⊆ U with |S| = |T |, that is mutually exlusive between the
3 element coordinate pairs.

Proof. ⇒ Suppose {Sj} has an exact cover, {Th}. That is, there is some subset, Th ⊆ Sj such
that ∪Th = ∪Sj , and the sets in Th are mutually exlusive. Suppose sets T and U are constructed
as defined above, with |T | = i, with i being the number of elements in ∪Th. In our construction
of U , there are two types of elements, Um represents elements that were constructed using α,
Uc represents elements that were constructed with elements of T that were not mapped to by α,
utilizing the permutation, π. Since |T | = |S|, each permutation of Um and Uc must have 1 instance
with a unique element in each position. For the elements in Um, we take the element in U for
each Um that represents an element that is part of the exact cover. Since each element in Sj has a
unique representation with its element value and set number, and each element ui maps to exactly
one element in T , the sets we chose in Um must be mutually exclusive. Now, we are left with the
elements in T that weren’t mapped to in position 1, so if we take one element from each group in Uc,
then |S| = |T |. Now, we just need to worry about positions 2 and 3. In positions 2 and 3, each set in

39

{Sj} has a cycle of our permutation between the elements representing its members. Further, since
it is a cycle, each element in T will be in position 2 and position 3 exactly once for every possible
element in position 1 in Uc. Further, since the cycles are only between members of the same sets
in Sj , there is no concern about choosing elements from T that were already chosen in Um. Thus,
if we start at the beginning of each cycle representing a set that not in the set cover, and move
through the cycle with each new element in position 1 of Uc, then every possible combination of
elements representing elements not in Th will be covered. Thus, we have a 3-Dimensional Matching
for T and U .
⇐ Suppose T and U have a 3-Dimensional Matching. That is, there is some subset S ⊆ U such that
|S| = |T |, and S is mutually exclusive over its coordinates of size 3. Further, assume T and U are
constructed as defined above. Now, take Um, representing the nodes that were constructed using α.
Thus, since each node in ui ∈ ∪Sj maps to an element in T with α, each ui must have successfully
mapped to an element in T . Further, since Um is constructed with (< α(ui) >,< i, j >,< i, j >),
where j is the set(s) i appears in in Sj , and since π, the permutation responsible for the elements
in Uc, only creates cycles between elements of the same set in Sj , in order for T to be mutually
exclusive there can be no elements in Um chosen for the 3-Dimensional Matching representing the
same set in Sj as an element in Uc that is chosen. Thus, since each element in Ui is represented by
the elements chosen from Um, and the sets represented by Um do not overlap with the sets chosen
from Uc, the sets represented by the elements in Um that were chosen must form an exact cover on
Sj .

7.1.8 Satisfiability ≤p Clique

Algorithm for Satisfiability

I 7→ f(I)→ Algorithm for Clique → S 7→ h(S)

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property: C1 ∧C2 ∧ · · · ∧Cp is satisfiable: if ∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S
then xi /∈ S, and if xi ∈ S then xi /∈ S and S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Details I: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn. f: Function f takes the
input I and convert it into a graph G = (V, E) where V = {< σ, i> |σ is a literal in Ci}, E =
{{<< σ, i >,< δ, i >>}| i 6= j and σ 6= δ} and k = p, the number of clauses. Algorithm for
Clique: Suppose there is a polynomial time algorithm for the Clique problem which returns a
sub-graph of G which is a k-clique. S: Solution S is the sub-graph of G which is a k-clique. h(S):
function h takes S as an input and transform the vertices of the solution to the literals that they
represent in G.

Theorem 7.8. Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn are satisfiable if and
only if there exists a graph G = (V,E) with a clique of size k, as defined above.

40

Proof. (⇒) Let us assume that ∃S, S is a solution to a given instance of Satisfiability. Given for
every clause in C there exists at least 1 literal which satisfies Ci ⇒ xi ∩Ci 6= ∅. We then construct
a graph G = (V, E) where V = {< x, i > |x is a literal in Ci} and E = {< x, i >,< y, j > |i 6= j
and x 6= y} and k = p. According to our construction, each vertex (which represents a literal) is
connected to all the other vertexes representing the literals from other clauses, except the vertexes
which represents the compliment of the literal and vertexes which represents literals of the same
clause. Since vertexes are not connected with their compliments in the graph, it will give us a clique
of size k.
(⇐) Suppose G is a graph with K-clique constructed as directed above from the instance I of
Satisfiability problem. In the graph constructed nodes which are in the same clause(group of
nodes) and nodes which represent the compliment of the graph must appear in distinct cliques and
thus each of the k clauses contain exactly of the clique nodes. This assignment satisfies the Boolean
formula because each group of nodes contains a clique node and thus each clause contains at least
one literal which is true.

7.1.9 Node Cover ≤p Feedback Arc Set

I think there might be something wrong here. We know that arc deletion is fast, and it seems like
we have false equivalence to the arc deletion problem occuring but I haven’t had enough time to
really dig into it.

Algorithm for Node Cover

I 7→ f(I)→ Algorithm for Feedback Arc Set → S 7→ h(S)

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Feedback Arc Set
Input: A directed graph H = (V,E) and a positive integer k
Property: there exists S ⊆ E such that every directed cycle of H contains an arc in S and |S| ≤ k

Details I: A graph G′ = (N ′, A′) and a positive integer `
f: Function f takes the input I and convert it into an instance of Feedback Arc Set problem

where
V = N ′x0, 1
E = {<< u, 0 >,< u, 1 >> |u ∈ N} ∪ {<< u, 1 >,< v, 0 >> |{u, v} ∈ E′
k = l

Algorithm for Feedback Arc Set: Suppose there is a polynomial time algorithm for the
Feedback Node Set problem.

S: S ⊆ E such that every directed cycle of H contains an arc in S and |S| ≤ k
h(S): function h takes S as an input and return the respective edge from G′.

Theorem 7.9. G′ = (V ′, E′) has a node cover of size l, iff there is a feedback arc set of size k on
the graph, H, as defined above.

41

Proof. (⇒) Suppose there is a node cover R on the graph G′ of size l. Suppose we construct the
digraph H as described above. For every v ∈ R lets remove the edge (v0, vi) from H. According
to our construction if a cycle in H enters a vertex from v0 can only leave through the edge (v0, v1)
and it can only enter edge v1 through the edge (v0, v1). Thus if a cycle in H uses the edge (u1, v0),
it must use the edge (u0, u1) and (v0, v1). At least one of these two edges have been removed since
at least u or v must be in the vertex cover to cover the edge (u, v) ∈ E′. which implies removing
either u or v makes the graph acyclic. Thus if G has a vertex cover of a size l then H has a feedback
arc set of size k.

(⇐) Suppose H has a Feedback Arc Set, S, of size k. WLOG we assume that the only edges
removed are of the form (u0, u1) because if some other edge (u1, v0) is removed then all cycles
in which this edge participated would have included the edge (v0, v1) too and we could remove
this edge instead. We assume that the set if vertices v ∈ V ′ for which the corresponding edge
(v0, v1) is removed in E′ forms a vertex cover for G′. Suppose there is some edge (u, v) ∈ E′ not
covered. then in H the cycle (u0, u1), (u1, v1), (v0, v1), (v1, u0) is unbroken by the removal of the
edges contradicting the assumption. Thus G′ must have a vertex cover of size l = k.

7.1.10 Node Cover ≤p Feedback Node Set

Algorithm for Node Cover

I 7→ f(I)→ Algorithm for Feedback Node Set → S 7→ h(S)

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Feedback Node Set
Input: A directed graph H = (V,E) and a positive integer k
Property: there exists R ⊆ V such that every directed cycle of H contains a vertex in R and
|R| ≤ k

Details
I: A graph G′ = (N ′, A′) and a positive integer `
f: Function f takes the input I and convert it into an instance of Feedback Node Set problem

where
V = N ′

E = {< u, v > |{u, v} ∈ A′}
k = l

Algorithm for Feedback Node Set: Suppose there is a polynomial time algorithm for the
Feedback Node Set problem.

S: S ⊆ E such that every directed cycle of H contains a vertex in R and |R| ≤ k
h(S): function h takes S as an input and return the respective vertices from G′.

Theorem 7.10. G′ = (V ′, E′) has a node cover of size l, iff there is a feedback arc set of size k on
the graph, H, as defined above.

42

Proof. (⇒) Let us assume there exists a vertex cover R of size |R| ≤ l on G′. Lets construct graph
H as described above. Lets remove nodes from H which corresponds to the nodes in R, along with
the edges connected to them. For any edge (u, v) ∈ A′ in G′, there will be a cycle between nodes
u and v in graph H. Therefore after removing these l vertices, which were the node cover of G′,
and their incident edges from H and all the nodes which were connected with the removed nodes
and formed cycles with the removed nodes will no longer form a cycle. Thus since removing the R
nodes from H makes the graph acyclic, it proves that these nodes are the feedback node set of H.

(⇐) Assume we construct H as defined above and it has a feedback node set |S| of size k, and
if they are removed all the cycles in the graph break. According to our construction each pair of
vertices u, v ∈ G′ that has an edge between them have a cycle between (u, v), (v, u) in H. Since
removal of the k vertices in the feedback node set breaks all the cycle in the digraph H, therefore
for each {u, v} ∈ G′ S must contain either u or v (or both). Thus S is a vertex cover of G′.

7.1.11 Node Cover ≤p Set Covering

Algorithm for Node Cover

I 7→ f(I)→ Algorithm for Set Covering → S 7→ h(S)

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Set Covering
Input: A finite family of sets {Sj} and a positive integer k
Property: there exists a subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj

Details
I: A graph G′ = (N ′, A′) and a positive integer `

f: Function f takes the input I and convert it into a A family of sets Sj with one set for each
vertex in G′. elements of Sj are defines to be the elements incident to j in G′. And k = l

Algorithm for Set Covering: Suppose there is a polynomial time algorithm for the Node
cover problem which returns a set of vertices R ⊆ V ′, |R| ≤ l and every arc in incident to a vertex
in R.

S: Solution S is a subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj
h(S): function h takes S as an input and Converts the set in {Th} back to their respective

vertexes and puts them in a set.The set of nodes represents a Node Cover for G′.

Theorem 7.11. G′ = (N ′, A′) has a node cover of size l iff there exist a set cover of size k = l on
the family of sets Sj built as described above.

Proof. (⇒) Suppose there exists a vertex cover of size l for the graph G′ and we built a family of
sets {Sj} as described above. Let R be the set of vertices representing the vertex cover for G′ then
the vertices in R covers all the edges in A′. Since any subset Tj is the set of edges incident on vertex
j, the union of Tj such that j ∈ R must contain all the edges in A′. Since union of all the edges in
A′ forms the set U , {Tj : j ∈ R} is a set cover if U, with size k = l. (⇐) Suppose there is a family
of sets {Sj}, as described above, and there is a set cover for {Sj} of size k. This means that there

43

exists k sets, {Th}, such that {Th} ⊆ {Sj} and ∪{Th} = ∪{Sj}. Since the sets {Sj} represents the
nodes and the elements of the sets represents the edges, a node cover of the graph implies that each
element of the graph G′ is covered by the k sets or the l nodes. Thus there exist a node cover of
size l in the graph G′.

7.1.12 Directed Hamiltonian Circuit ≤p Undirected Hamiltonian Circuit

Algorithm for Directed Hamiltonian Circuit

I 7→ f(I)→ Algorithm for Undirected Hamiltonian Circuit → S 7→ h(S)

Directed Hamiltonian Circuit
Input: A directed graph H
Property: H has a directed cycle which includes each vertex exactly once.

Undirected Hamiltonian Circuit
Input: A graph G
Property: G has a cycle which includes each vertex exactly once.

Details
I: A directed graph H

f: Function f takes the input I and convert it into an instance of Undirected Hamiltonian Circuit
where G = (N,E)
N = v x {0, 1, 2}
E = {{< u, 0 >,< u, 1 >}, {< u, 1 >,< u, 2 >} — u ∈ V } ∪ {{< u, 2 >,< v, 0 >}‖ < u, v >∈ E}

Algorithm for Undirected Hamiltonian Circuit where:
S: Cycle which covers all the nodes in G exactly once.
h(S):

Theorem 7.12. Graph H has a Directed Hamiltonian Circuit iff graph G has a Undirected Hamil-
tonian Circuit.

Proof. (⇒) Suppose H has a Directed Hamiltonian Circuit. We construct G as defined above. We
replace vertex v ∈ V with (v, 0), (v, 1), (v, 2) ∈ N . In H to travel from (v, 0) to (v, 2) you have to
go through (v, 1) and (v, 1) is connected to only (v, 0), (v, 2), further (v, 2) is connected to (u, 0)
which represents the directed edge in G. Thus all vertices are visited once in the cycle. thus G has
a Undirected Hamiltonian Circuit.

(⇐) Suppose G = (N, A) has a Undirected Hamiltonian Circuit. The (u, 0) node can be
considered as the ”in-node” and the (u, 2) can be considered as the ”out-node”. The edge between
(u, 2) to (v, 0) in G represents a path from the node u to v in H. Nodes (u, 0), (u, 1), (u, 2) in G
represent the node u in H. since (u, 0) is represents the in-node and the (u, 2) represents the
out node, the Directed Hamiltonian circuit in H is guaranteed to give a corresponding Undirected
Hamiltonian circuit in G.

7.1.13 Partition ≤p Max Cut

Algorithm for Partition

44

I 7→ f(I) → Algorithm for Max Cut
→ x 7→ h(x)

→ N.S. 7→ N.S.

Partition
Input: (c1, c2, . . . cs) ∈ Zs
Property: there is an I ⊆ {1, 2, . . . s} such that

∑
h∈I ch =

∑
h/∈I ch

Max Cut
Input: A graph G = (N,A), a weight function w : A→ Z and a positive integer W
Property: ∃S ⊆ N such that

∑
{u,v}∈A,u∈S,v/∈S w({u, v}) ≥W

Details Given an instance I of partition, we form an instance f(I) of max cut using:

N = {1, ..., s}
A = {{i, j} | i ∈ N, j ∈ N, i 6= j}
w({i, j}) = ci · cj

W =
1

4

(∑
ci

)2

Theorem 7.13. There is a solution for instance I of partition ⇐⇒ there is a solution for f(I) in
max cut.

Proof. ⇒ Assume there is a solution for partition. Let d = {d1, ..., dn} enumerate the digits in the
solution, and f = {f1, ..., fm} the digits in the complement. Note that d1 + ...+dn = f1 + ...+fm =
1

2

∑
ci. Because our graph is totally connected, we are guaranteed a cut on our graph with weight

45

equal to:∑
di(f1 + ...+ fm)

=
∑

di

(
1

2

∑
ci

)

= (d1)

(
1

2

∑
ci

)
+ ...+ (dn)

(
1

2

∑
ci

)

= (d1 + ...+ dn)

(
1

2

∑
ci

)

=

(
1

2

∑
ci

)(
1

2

∑
ci

)

=
1

4

(∑
ci

)2

=

(
1

2

∑
ci

)2

= ∗

(
1

2

∑
ci

)2

since we have a partition, 2|
∑

ci. Note the square of an integer is an integer.

Our cut can be given explicitly as {di}. ⇐ Now assume that there is a max cut with weight greater
or equal to W. Then there are digits {d1, ..., dn} corresponding to vertices in the max cut, and
{f1, ..., fm} corresponding to the rest of the vertices, such that

∑
di(f1 + ... + fm) ≥ W . That is,

(d1 + ...+ dn)(f1 + ...+ fm) ≥ W = ∗

(
1

2

∑
ci

)2

= ∗

(
1

2
(d1 + ...+ dn + f1 + ...+ fm)

)2

. Assume

for a contradiction (and without loss of generality) that (d1 + .. + dn) = (f1 + ... + fm) + n, n ∈.

46

Let
∑
di = d,

∑
fj = f . Then you have:∑

di
∑

fj = d · f

= (f + n)f

= f2 + nf.

but notably, with that assumption we have:

W = ∗
1

4
(f + d)

2

= ∗
1

4
(2f + n)

2

= ∗
1

4

(
4f2 + 4fn+ n2

)
= ∗f2 + nf +

n2

4

> f2 + nf

=⇒ W >
∑

di
∑

fj

which of course couldn’t be, since we wouldn’t have a max cut. We conclude that our digits are a
partition.

7.1.14 Satisfiability ≤P 0-1 Integer Programming

Algorithm for Satisfiability

I 7→ f(I) → Algorithm for 0-1 Integer Programming
→ x 7→ h(x)

→ N.S. 7→ N.S.

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property: C1 ∧C2 ∧ · · · ∧Cp is satisfiable: if ∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S
then xi /∈ S, and if xi ∈ S then xi /∈ S and S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

0-1 Integer Programming
Input: A integer matrix C and an integer vector ~d
Property: there is a 0-1 vector ~x such that C~x ≥ ~d

Details Given an instance of Satisfiability, we form f(I) an instance of 0-1 integer programming as

follows: Let the entries of C be defined so for i ∈ {1, ..., p} and j ∈ {1, ..., n}, cij =


1 if xj ∈ Ci
−1 if x̄j ∈ Ci
0 otherwise

Let di = 1 - (the number of complemented variables in Ci).

47

Theorem 7.14. There is a solution for an instance I of Satisfiability ⇐⇒ there is a solution for
an instance f(I) of 0-1 Integer Programming.

Proof. ⇒ First assume there is a solution for an instance I of Satisfiability. In that case, let
xj = 1 ⇐⇒ xj ∈ S. We verify that for each row, Ci ·xj ≥ di. We do so inductively on the number
of complemented variables, in a given Ci, ni.
Base Case

Let n = 0.

If there are no complemented variables in Ci, then at least one satisfying literal, say xj must have
the value 1. In that case, Cijxj = 1. The rest of the products will be ≥ 0, so the sum of products
is ≥ 1.
Inductive Step

Assume Ci · ~x ≥ 1− ni holds for ni ≤ n

Consider a clause Ci with n + 1 negated variables. Let f be a permutation that arranges our xj so
1 to a are positive in the clause, a + 1 to b are negative, and b + 1 to m are those not included in
the clause. Now, we write:

Ci · ~x = Cif(1)xf(1) + ...+ Cif(a)xf(a) + Cif(a+1)xf(a+1)

+ ...+ Cif(b)xf(b) + Cif(b+1)xf(b+1) + ...+ Cif(m)xf(m)

= Cif(1)xf(1) + ...+ Cif(a)xf(a) + Cif(a+1)xf(a+1) + ...

+ Cif(b−1)xf(b−1) + Cif(b+1)xf(b+1) + ...+ Cif(m)xf(m) + Cif(b)xf(b).

we assumed that:

Cif(1)xf(1) + ...+ Cif(a)xf(a) + Cif(a+1)xf(a+1) + ...

+ Cif(b−1)xf(b−1) + Cif(b+1)xf(b+1) + ...+ Cif(m)xf(m) ≥ 1− n.
Now we note that:

Cif(1)xf(1) + ...+ Cif(a)xf(a) + Cif(a+1)xf(a+1) + ...

+ Cif(b−1)xf(b−1) + Cif(b+1)xf(b+1) + ...+ Cif(m)xf(m) + Cif(b)xf(b).

≥ Cif(1)xf(1) + ...+ Cif(a)xf(a) + Cif(a+1)xf(a+1) + ...

+ Cif(b−1)xf(b−1) + Cif(b+1)xf(b+1) + ...+ Cif(m)xf(m) + (−1) (since Cif(b)xf(b) is at least -1)

≥ (1− n)−1 (from our assumption)

= 1− (n+ 1)

=⇒ Ci · ~x ≥ 1− (n+ 1).

Thus our instance of 0-1 Integer Programming is satisfied.
⇐ Now assume that our instance of 0-1 I.P. has a solution, ~x. We verify first that there are no

contradicting literals, which is immediately true since the literal assignments are encoded with
binary values. Next we verify that for each Ci, Ci ∩S 6= ∅. Assume this is not true. Then for some
Ci, Ci ∩ S = ∅. Let n be the number of negative literals in Ci. Since Ci ∩ S = ∅, we do not have a
satisfying literal for the clause. Then every positive literal appearing in the clause must be assigned
false, and every false literal that appears in the clause must have been assigned true. Recall that

48

for Cij =


1 if xj ∈ Ci
−1 if x̄j ∈ Ci
0 otherwise

from before. Because the variable assignment comes from ~x, and using

the row in our matrix corresponding to our unsatisfied Ci, we have: Cijxj =


0 if Cij = 1

−1 if Cij = −1

0 if Cij = 0

.

Then Ci · ~x = −n, which is strictly less than (1− n) = di. But then our inequality does not hold!
We conclude that we have a solution for Satisfiability.

7.1.15 Chromatic Number ≤p Exact Cover

Algorithm for Chromatic Number

I 7→ f(I) → Algorithm for Exact Cover
→ x 7→ h(x)

→ N.S. 7→ N.S.

Chromatic Number
Input: A graph G = (N,E) and a positive integer k
Property: there is a function φ : N → Zk such that if u and v are adjacent then φ(u) 6= φ(v)

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Details Given an instance I of chromatic number, f(I) goes as follows: The set of elements is defined
as

N ∪A ∪ {(u, e, f) | u is incident with e and 1 ≤ f ≤ k}

The sets Sj are equal to:

{Ui} ∪ {Eh}
where Ui, Eh are defined as:

Ui = {{u} ∪ {(u, e, f)} | 1 ≤ f ≤ k, u ∈ N, e is incident with u}
Eh = {{e} ∪ {(u, e, f) | f 6= f1} ∪ {(v, e, f) | f 6= f2} | e ∈ A, f1, f2 ∈ Zk, f1 6= f2 and u, v are adjacent with e.}

Given a solution x = {Tj} to exact cover, we define h(x) as follows: For n ∈ N , if n has no edges
let φ(n) = 0. If n does have an edge, choose φ(n) to be f, where {n} ∪ {(n, e, f)} is included in the
exact cover. Note that this must exist, or we would not have a complete cover of the nodes.

Theorem 7.15. There is a solution for an instance I of chromatic number ⇐⇒ there is a solution
for f(I) in exact cover.

Proof. ⇒ Assume that you have a solution, φ, for chromatic number. We generate an exact cover

49

as follows:⋃
n∈N

An ∪Bn

where An and Bn are defined as:

An = {{n} ∪ {(n, e, φ(n)) | e is an edge of n}}
Bn = {{e} ∪ {(n, e, f) | f 6= φ(n)} ∪ {(v, e, f) | f 6= φ(v)} | φ(n) > φ(v) and n, v are connected by edge e.}

Note that An ∈ {Ui} by construction. Further since we require φ(v) 6= φ(n) for any v adjacent
to n, the Bn are guaranteed to be in {Eh}. What’s more, each (n, e, f) exists in exactly one set
from our requirement that φ(n) > φ(v) and the construction requirement that f 6= φ(n), g 6= φ(v).
In addition to the {(n, e, f)}, we find that the nodes and edges are covered by one set in our
constructed cover (if you are unsure for the edges, recall our restriction that φ(n) > φ(v)). Thus
we have an exact cover for our elements!
⇐ Assume that our instance in exact cover has a solution, {Tj}. Let u and v be adjacent vertices

in N, connected by edge e ∈ E. To cover our u, v elements we must have {u, (u, e,m)}, {v, (v, e, n)} ∈
{Tj}. Assume for a contradiction that m = n, or from our definition of φ that φ(u) = φ(v). Assume
WLOG that {e} ∪ {(u, e, f)} ∪ {(v, e, g)}, f 6= m, g 6= k for some k 6= m, is included to cover e. We
verify that this is WLOG by noting that the only other option is {e} ∪ {(u, e, f)} ∪ {(v, e, g)}, f 6=
k, g 6= m for some k 6= m. But then we must include another set like {v, (v, e, k)} to cover (v, e, k),
and then we have no exact cover.
Then φ(u) 6= φ(v) as desired.

7.1.16 Satisfiability with at Most 3 Literals Per Clause ≤p Chromatic Number

Algorithm for Satisfiability With at Most 3 Literals Per Clause

I 7→ f(I) → Algorithm for Chromatic Number
→ x 7→ h(x)

→ N.S. 7→ N.S.

Satisfiability With At Most Three Literals Per Clause
Input: Clauses D1, D2, . . . Dr, each consisting of at most 3 literals from {u1, u2, . . . um, u1,
u2, . . . um}
Property: {D1, D2, . . . Dr} is satisfiable

Chromatic Number
Input: A graph G = (N,E) and a positive integer k
Property: there is a function φ : N → Zk such that if u and v are adjacent then φ(u) 6= φ(v)

Details Given an instance I of Satisfiability With at Most 3 Literals Per Clause, we form an instance
f(I) of Chromatic number as follows:

50

Assume WLOG that m ≥ 4. Let

N = {u1, ..., um}
∪ {ū1, ..., ūm}
∪ {v1, ..., vm}
∪ {D1, ..., Dr}

A = {{ui, ūi} | i = 1, ..., n}
∪ {{vi, vj} | i 6= j}
∪ {{vi, uj} | i 6= j}
∪ {{vi, ūj} | i 6= j}
∪ {{ui, Df} | ui /∈ Df}
∪ {{ūi, Df} | ūi /∈ Df}

k = m+ 1

Theorem 7.16. There is a solution for an instance I of Satisfiability With at Most 3 Literals Per
Clause ⇐⇒ there is a solution for f(I) in chromatic number.

Proof. First we acknowledge our assumption that m ≥ 4. If this is not the case, our satisfiability
problem is bounded by a polynomial time solving algorithm.
⇒ Assume you have a solution for Satisfiability With at Most 3 Literals Per Clause, S. Let J
= S ∪ {ui | ūi /∈ S}. We construct the m + 1 equivalence classes as follows: for each j ∈ J ,
[j] = {vj , uj} ∪ {Di | j = max({j ∈ J | uj ∈ Di})}. There are m such classes, because J has
m elements. Let the last equivalence class ([m + 1]) consist of all of the remaining vertices. This
guarantees a partition on our set of vertices. We now confirm that φ : Zm+1 → V where {1, ...,m+1}
enumerates our equivalence classes, and φ(k) is equal to the equivalence class enumerated by k, is a
solution for chromatic color. Given any of the [j] classes, we know that vj and uj are not adjacent
from construction. Furthermore, if there are any Di in the equivalence classes, then we must have
j ∈ Di, so again from construction they cannot be adjacent. We now consider the equivalence class
[m+ 1]. Because we have a Satisfiability With at Most 3 Literals Per Clause solution, this will not
contain any of the Di. To see why, note that we constructed our equivalence class to ensure that
every Di corresponds to exactly one of the [j] classes. Our [m + 1] class cannot contain vj from
our choice of equivalence classes. The literal vertices are not connected to each other, so we are
guaranteed an independent set. We have verified our solution for chromatic color.
⇐ Now assume you have a solution for chromatic number. Define S = {uj | φ(uj) = φ(Di)}∪ {ūj |
φ(ūj) = φ(Di)} for any of the Di vertices in our graph. It’s quick to check that there is a literal
from each clause in S, so we verify that there are no complementary literals. Assume without loss of
generality that uj ∈ S. Then φ(uj) = φ(Di) for some Di in our graph. For a contradiction, assume
that ūj is also in S. In that case, one of the Di have to be colored with our leftover color class
[m+ 1] from the m vi vertices. For each pair of literals, one of them has to be in the [m+ 1] class.
Each literal in the [m+ 1] expression must appear in the expression, or they would be adjacent to
the Di vertex. If we have more than 3 literals, this becomes a contradiction from the construction
of our graph.

7.1.17 Knapsack ≤p Sequencing

Algorithm for Knapsack

51

I 7→ f(I) → Algorithm for Sequencing
→ x 7→ h(x)

→ N.S. 7→ N.S.

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

Job Sequencing
Input: (T1, T2, . . . Tp)inZp, the execution time, (D1, D2, . . . Dp)inZp, the deadline,
(P1, P2, . . . Pp)inZp, the penalty and a positive integer k
Property: there is a permutation, π of {1, 2, . . . p} such that

k ≥

{
Pπ(j) if Tπ(1) + · · ·+ Tπ(j) > Dπ(j)

0 otherwise

Details Given an instance of knapsack, produce an instance of sequencing as follows: Let p = r,
Ti = Pi = ai, Di = b, and k =

∑
ai − b.

Given a solution π for sequencing, choose the first n values for which aπ(1) + ... + aπ(n) = b. Let
xπ(1), ..., xπ(n) = 0, and the remaining xπ(n+1), ..., xπ(r) = 0.

Theorem 7.17. There is a solution (x1, ..., xr) for knapsack ⇐⇒ there is a solution π for our
instance of Sequencing.

Proof. ⇒ Assume there is a solution for knapsack. Choose a permutation π so that aπ(1) + ... +
aπ(n) = b. Then the first n penalties are not counted. The sum is reduced to

∑r
j=n+1 aj =

∑
ai−b.

Then there is a solution for our instance of sequencing.

⇐Now assume that there is a solution for sequencing. That is, ∃ π so
∑
ai−b ≥

∑{
aπ(j) if aπ(1) + ...+ aπ(j) > b

0 otherwise

We consider two cases for this, mostly due to index gymnastics. If aπ(1) + ...+aπ(j) is never greater
than b, then

∑
ai − b ≥ 0. Since b is never larger than our partial sum, we have∑

ai −
∑

ai = 0

≥
∑

ai − b

≥ 0

Thus
∑
ai = b. Otherwise, we have

∑
ai − b ≥ aπ(n+1) + ...+ ar

=⇒
∑

ai −
(
aπ(n+1) + ...+ ar

)
≥ b

≤ aπ(1) + ...+ aπ(n)

=⇒ aπ(1) + ...+ aπ(n) = b.

. We have found a subset of our ai which sum to b, as we originally sought.

52

7.1.18 Knapsack ≤p Partition

Algorithm for Knapsack

I 7→ f(I) → Algorithm for Partition
→ x 7→ h(x)

→ N.S. 7→ N.S.

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

Partition
Input: (c1, c2, . . . cs) ∈ Zs
Property: there is an I ⊆ {1, 2, . . . s} such that

∑
h∈I ch =

∑
h/∈I ch

Details Given an instance I of knapsack, we form an instance f(I) of partition as follows:

s = r + 2

ci = ai; i = 1, ..., r

cr+1 = b+ 1

cr+2 =
∑

ai + 1− b

Given a solution I of knapsack, we define h(I) as follows. If cr+2 ∈ I, then let X = I. Otherwise,
let X = IC . Then

xi =

{
1 if ci ∈ X
0 otherwise

and h(I) = {xi}.

53

Theorem 7.18. There is a solution h(I) = (x1, ..., xr) for an instance I of Knapsack ⇐⇒ there
is a solution I ⊆ {1, ..., r + 2} for f(I) in partition.

Proof. There is a solution for Knapsack ⇐⇒ some subset of the ai, let’s assume they are indexed
by K, sum to b. This is true exactly when

cr+2 +
∑
k∈K

ak =
∑

ai + 1− b+
∑
k∈K

ak

=
∑

ai + 1− b+ b

=
∑

ai + 1.

but we also have:

cr+1 +
∑
j /∈K

aj = b+ 1 +
∑
j /∈K

aj

=
∑
k∈K

ak + 1 +
∑
j /∈K

aj

=
∑

ai + 1

Which is true ⇐⇒ we have a partition on our set, formed by K ∪ {r + 2}.

7.1.19 Node Cover ≤p Directed Hamilton Circuit

Algorithm for Node Cover

I 7→ f(I) → Algorithm for Directed Hamiltonian Circuit
→ x 7→ h(x)

→ N.S. 7→ N.S.

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Directed Hamiltonian Circuit
Input: A directed graph H
Property: H has a directed cycle which includes each vertex exactly once.

Details Given an instance ((N’, A’), l) of node cover, we form a directed graph as follows: without
loss of generality, assume that A’ = Zm. Now, let

V = {a1, ..., al} ∪ {(u, i, α) | u ∈ N ′ is incident with i ∈ A′ ∧ α ∈ {0, 1}}.

54

The ai correspond to the total nodes we will allow in our node cover solution. Define the edges as:

E ={< (u, i, 0), (u, i, 1) >| (u, i, 0) ∈ V }
∪{< (u, i, α), (v, i, α) >| i ∈ A′, u and v are incident with i, α ∈ {0, 1}}
∪{< (u, i, 1), (u, j, 0) >| i ≤ j, u is incident with i and j, and @h, i < h < j,

where u is incident with h.}
∪{< (u, i, 1), af >| 1 ≤ f ≤ l ∧ @h > i so that u is incident with h}
∪{< af , (u, i, 0) >| 1 ≤ f ≤ l ∧ @h < i so that u is incident with h}

Given a solution {e1, e2, ..., em} (where m = |V |) for our instance of Directed Hamiltonian Circuit,
the set {u |< af , (u, i, 0) >∈ {e1, ..., en}} is a node cover for G’.

Theorem 7.19. There is a node cover {v1, ..., vl} for G’ ⇐⇒ There exists a Directed Hamilton
Circuit in our instance.

Proof. ⇒ Let {v1, ..., vl} be a node cover for G’. Pick an onto mapping from {vi} to {aj} so we may
index them together. Now fix an ai, vi pair. Let {e1, ..., en} be the set of edges between vi and any
xj in our graph. Construct a path from (vi, e1, 0) to (vi, en, 1) as follows: start at (vi, ej , 0). If the
other end of ej is in {vi} simply move (vi, ej , 0)→ (vi, ej , 1)→ (vi, ej+1, 0). Note that those nodes
will be addressed later when we get to their corresponding ai in the path. Otherwise, let xi be the
other node adjacent to ej and move (vi, ej , 0)→ (xj , ej , 0)→ (xj , ej , 1)→ (vi, ej , 1)→ (vi, ej+1, 0).
Glue together the previously described path and the path ai → (vi, e1, 0), as well as (vi, en, 1) →
ai+1(mod l). This must cover every node in our graph by construction, and is a cycle. ⇐ Assume
there is a Directed Hamiltonian Circuit in our instance. Let vi be the set of vertices labeling the
nodes that each of the ai point to. Note these are unique, as we have a Directed Hamiltonian
Circuit. Now assume BWOC that there is some a, b ∈ G′ where a, b /∈ {vi} have an edge between
them. Let the edge between them be n. This introduces the nodes (a, n, 0), (a, n, 1), (b, n, 0), and
(b, n, 1). There is no way to reach these vertices from our other circuit, however, since the n edge
is not shared with any of the {vi} and the {ai} are already accounted for. Then there must be no
vertices in G’ that are both not in {vi} and share an edge. We conclude that {vi} is a vertex cover
for G’.

7.1.20 Exact Cover ≤p Steiner Tree

Algorithm for Exact Cover

I 7→ f(I) → Algorithm for Steiner Tree
→ x 7→ h(x)

→ N.S. 7→ N.S.

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

55

Details Given an instance, I, of Exact Cover, form an instance f(I) of Steiner Tree as follows:

k = |{ui}|
N = {n0} ∪ {Sj} ∪ {ui} ∪ {u∗i }
R = {n0} ∪ {ui}
A = {{n0, Sj}} ∪ {{Sj , ui} | ui ∈ Sj} ∪ {{ui, u∗i }}
w({n0, Sj}) = |Sj |
w({Sj , ui}) = k + 1

w({ui, u∗i }) = −(k + 1)

Given a solution x = T = (NT , ET) for our instance of Steiner Tree, define h(x) as {Sj} ∩NT .

Theorem 7.20. There is a solution for an instance I of exact cover ⇐⇒ there is a solution for
f(I) in Steiner tree.

Proof. ⇒ Assume there is some {Tj} which is an exact cover for {ui}. Construct a tree of height
three as n0 → Tj for each Tj , Tj → ui for each ui ∈ Tj , and ui to u∗i for each ui ∈ Tj . Since {Tj} is
an exact cover, there are no distinct Tj , Tk pointing to the same ui and certainly no distinct ui, uh
point to the same u∗f . Then we have a tree. Now note that since the {Tj} cover our set, each of
the required ui are included in our tree. The Tj form a partition on our set, so

∑
|Tj | = |{ui}|. In

that case,
∑
Tj

w({n0, Tj}) = k. Now note that each ui is accessible from a single edge from one of

the Tj we have selected. Those paths have weight k + 1, which we offset by using the path with
weight -(k + 1) to u∗i . The total weight on our tree is k.
⇐ Assume you have a solution for f(I) in Steiner Tree. To access the ui, we must come from a
set node, say Tk. To access Tk, we may either ”hop” over from a distinct uj also in Tk that was
accessed from a distinct Th, or directly from n0. We rule out the first option, since such a traversal
would add a net (k + 1) weight to our tree. In that case, each ui must be accessed from a Th
connected to n0. Now assume for a contradiction that there is some ui in Tm, Tn, n 6= m. Since
every ui is in one Tp,

∑
|Tp| ≥ |ui|, but if we have a repeat

∑
|Tp| > |ui|. Then we do not have a

solution for our instance of Steiner Tree. We conclude that each ui exists in a unique Tp.

7.1.21 Exact Cover ≤p Knapsack

Algorithm for Exact Cover

I 7→ f(I)→ Algorithm for Knapsack → S 7→ h(S)

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

56

Details
I: A family {Sj} of subsets of the set {u1, u2, . . . ut}

f: Function f takes the input I and convert it into an instance of Knapsack where
d = |Sj |+ 1

εij =

{
1 if ui ∈ Sj
0 if ui /∈ Sj

aj =
∑
εjid

i−1

b =
dt − 1

d− 1
Algorithm for Knapsack: Suppose there is a polynomial time algorithm for the Knapsack

problem which returns a 0-1 solution for
∑
ajxj = b.

S: Solution S is a 0-1 solution for f(I).
h(S):

Theorem 7.21. Sj has an Exact Cover iff (a1, a2, . . . ar, b), constructed as stated above, has a 0−1
solution for

∑
ajxj = b

Proof. (⇒) Suppose there is a solution Th ⊆ Sj for an instance I of exact cover. Based on our

construction for knapsack as defined above, for all ui ∈ Sj , aj =
∑

(|Sj + 1|)i−1 and b =
dt − 1

d− 1
.

Suppose there is a 0-1 solution for our constructed instance of Knapsack such that for any a ∈ aj

that represents the corresponding t ∈ Th, then
∑
ajxj = Σti=1(|Sj + 1|)i−1 =

(|Sj + 1|)t − 1

(|Sj + 1|)− 1
. As

defined above d = |sj |+ thus
∑
ajxj =

∑
di−1 =

dt − 1

d− 1
. expanding the left hand side of the

equation we get (d1−1 + d2−1 · · ·+ dt−1) =
dt − 1

d− 1
.By multiplying the equation with (d− 1), we get

(d − 1)(d1−1 + d2−1 · · · + dt−1) = dt − 1 on solving we get d − 1 = d − 1, thus there exists a 0-1
solution for Knapsack.

(⇐) Suppose there is a 0-1 Knapsack solution for Knapsack for x ∈ xj such that
∑
ajxj = b,

where
∑
ajxj and b are as defined above. As per our construction only one aj ∈ aj represents an

element ui inSj . Therefore for there to be a 0-1 solution for Knapsack each ui inSj must appear
only once in ∪Th and if each set in Th is disjoint and ∪Sj = ∪Th then by definition Th is an exact
cover of Sj .

7.2 Problem Statements

Satisfiability
Input: Clauses C1, C2, . . . Cp with literals x1, x2, . . . xn, x1, x2, . . . xn.
Property: C1 ∧C2 ∧ · · · ∧Cp is satisfiable: if ∃S ⊆ {x1, x2, . . . xn, x1, x2, . . . xn} such that if xi ∈ S
then xi /∈ S, and if xi ∈ S then xi /∈ S and S ∩ Cj 6= ∅, ∀j ∈ {1, 2, . . . p}

0-1 Integer Programming
Input: A integer matrix C and an integer vector ~d
Property: there is a 0-1 vector ~x such that C~x ≥ ~d

57

Clique
Input: A graph G and a positive integer k
Property: G has a clique of size k

Set Packing
Input: A family of sets {Sj} and a positive integer `
Property: {Sj} has ` mutually exclusive sets.

Node Cover (Vertex Cover)
Input: A graph G′ = (N ′, A′) and a positive integer `
Property: ∃R ⊆ N ′ such that |R| ≤ ` and every arc in incident to a vertex in R.

Set Covering
Input: A finite family of sets {Sj} and a positive integer k
Property: there exists a subfamily {Th} ⊆ {Sj}, |{Th}| ≤ k and ∪Th = ∪Sj

Feedback Node Set
Input: A directed graph H = (V,E) and a positive integer k
Property: there exists R ⊆ V such that every directed cycle of H contains a vertex in R and
|R| ≤ k

Feedback Arc Set
Input: A directed graph H = (V,E) and a positive integer k
Property: there exists S ⊆ E such that every directed cycle of H contains an arc in S and |S| ≤ k

Directed Hamiltonian Circuit
Input: A directed graph H
Property: H has a directed cycle which includes each vertex exactly once.

Undirected Hamiltonian Circuit
Input: A graph G
Property: G has a cycle which includes each vertex exactly once.

Satisfiability With At Most Three Literals Per Clause
Input: Clauses D1, D2, . . . Dr, each consisting of at most 3 literals from {u1, u2, . . . um, u1,
u2, . . . um}
Property: {D1, D2, . . . Dr} is satisfiable

58

Chromatic Number
Input: A graph G = (N,E) and a positive integer k
Property: there is a function φ : N → Zk such that if u and v are adjacent then φ(u) 6= φ(v)

Clique Cover
Input: A graph G′ = (N ′, E′) and a positive integer `
Property: N ′ is the union of ` or fewer cliques

Exact Cover
Input: A family {Sj} of subsets of the set {u1, u2, . . . ut}
Property: there is a subfamily {Th} ⊆ {Sj} such that {Th} are disjoint and ∪Th = ∪Sj =
{u1, u2, . . . ut}

Hitting Set
Input: A family {Ui} of subsets of {s1, s2, . . . sr}
Property: there is a set W such that for each i, |W ∩ Ui| = 1

Steiner Tree
Input: A graph G = (N,A), R ⊆ N , a weighting function w : A→ Z and a positive integer k
Property: G has a subtree of weight ≤ k containing the set of vertices in R

3-Dimensional Matching
Input: U ⊆ T × T × T where T is a finite set
Property: there is a set W ⊆ U such that |W | = |T | and no two elements of W agree in any
coordinate

Knapsack
Input: (a1, a2, . . . ar, b) ∈ Zr+1

Property:
∑
ajxj = b has a 0-1 solution

Job Sequencing
Input: (T1, T2, . . . Tp)inZp, the execution time, (D1, D2, . . . Dp)inZp, the deadline,
(P1, P2, . . . Pp)inZp, the penalty and a positive integer k
Property: there is a permutation, π of {1, 2, . . . p} such that

k ≥

{
Pπ(j) if Tπ(1) + · · ·+ Tπ(j) > Dπ(j)

0 otherwise

59

Partition
Input: (c1, c2, . . . cs) ∈ Zs
Property: there is an I ⊆ {1, 2, . . . s} such that

∑
h∈I ch =

∑
h/∈I ch

Max Cut
Input: A graph G = (N,A), a weight function w : A→ Z and a positive integer W
Property: ∃S ⊆ N such that

∑
{u,v}∈A,u∈S,v/∈S w({u, v}) ≥W

7.3 Corrections on Original Reductions

7.3.1 Corrections

We have made notable corrections and adjustments to Karp’s work in the following areas. For
several problems the exact reduction provided was not correct. Accordingly we have sub-divided our
corrections into issues with problem statements or with reductions. Note that further modifications
were made on syntax on several problems as we saw fit.

1. Problem Statements

(a) 0-1 Integer Programming

i. we found the original 0-1 Integer Programming specifications to be inadequate for
the reduction supplied. We modified the problem in our NP-Complete subset to use
the inequality version of 0-1 Integer Programming, which allows for a clean reduction
from Satisfiability into 0-1 Integer programming.

(b) Feeback Node Set

i. In the original problem statement for Feedback Node Set, it is not stated that
|R| ≤ k.

(c) Feedback Arc Set

i. In the original problem statement for Feedback Arc Set, it is not stated that |S| ≤ k.

(d) Knapsack

i. A small typo was corrected to say (a1, a2, ..., ar, b) ∈ Zr+1.

2. Reductions

(a) Exact cover to Steiner Tree

i. This was the largest correction we made to a reduction. In the original paper, the
reduction provided has a counter example given by:

S1 = {1, 5}
S2 = {1, 3}
S3 = {1, 2}
S4 = {2, 3}
S5 = {2, 5}
S6 = {3, 4}

We present a modified reduction for exact cover to Steiner Tree.

60

(b) 3-Satisfiability to Chromatic Number

i. There were minor transcription errors on this reduction.

(c) Exact Cover to 3-Dimensional Matching

i. In our paper, we assumed a value for σ that was sufficient for the reduction. It was
not originally specified.

(d) Knapsack to Sequencing

i. The value for k was significant to this reduction, and not previously provided.

(e) SAT to 0-1

i. A minor labeling error (bi vs. di) was corrected.

61

References

[1] Giorgio Ausiello, Alessandro D’Atri, and Marco Protasi. On the structure of combinatorial
problems and structure preserving reductions. International Colloquium on Automata, Lan-
guages, and Programming, pages 45–60, 1977.

[2] Vicky Choi. Different adiabatic quantum optimization algorithms for the np-complete ex-
act cover problem. Proceedings of the National Academy of Sciences of the United States of
America, 108(7):E19–E20, 2011.

[3] Stephen A. Cook. The complexity of theorem-proving procedures. The Third Annual ACM
Symposium, pages 151–158, 1971.

[4] Jerzy A Filar, Michael Haythorpe, and Richard Taylor. Linearly-growing reductions of karp’s
21 np-complete problems. 2019.

[5] Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
Boston, MA, 1972.

[6] Mark W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36(3):490–509.

[7] Luc Longpre and Paul Young. Cook reducibility is faster than karp reducibility in np. Journal
of Computer Science and System Sciences, 41:389–401, 1990.

[8] Neeraj Kayal Manindra Agrawal and Nitin Saxena. Primes is in p. Annals of Mathematics,
160:781–793, 2004.

[9] Haiko Muller and Andreas Brandstadt. The np-completeness of steiner tree and dominating
set for chordal bipartite graphs. Theoretical Computer Science, 53:257–265.

[10] Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete Comput Geom, 44:883–895, 2010.

62

	Introduction
	Related Work
	Reducibility among Combinatorial Problems by Richard M. Karp
	Adjacent Works
	Cook reducibility is faster than Karp reducibility in NP by Luc Longpre and Paul Young
	On the Structure of Combinatorial Problems and Structure Preserving Reductions by Giorgio Ausiello, Allessandro D'Atri, and Marco Protasi
	Different adiabatic quantum optimization algorithms for the NP-complete exact cover problem by Vicky Choi
	Improved Results on Geometric Hitting Set Problems by Nabil H. Mustafa and Saurabh Ray
	Linearly-Growing Reductions of Karp's 21 NP-Complete Problems
	The Complexity of Optimization Problems by Mark W. Krentel
	The NP-Completeness of Steiner Tree and Dominating Set for Chordal BiPartite Graphs by Haiko Muller and Andreas Brandstadt
	Primes is in P

	The Complexity of Theorem-Proving Procedures
	Notation

	The Cycle
	Our Contributions to the Cycle
	3D Matching P Clique
	 Undirected Hamiltonian Circuit P Directed Hamiltonian Circuit
	Feedback Arc P Set Covering
	 Set Packing P Node Cover
	 Exact Cover P Undirected Hamiltonian Circuit
	 Hitting Set P Steiner Tree
	 Satisfiability P Steiner Tree
	 Knapsack P 0-1 Integer Programming
	 Clique Cover P Chromatic Number
	Feedback Arc Set p Feedback Node Set
	Set Covering P Steiner Tree
	Hitting Set P Exact Cover
	Hitting Set P Clique
	Set Packing P Clique
	Exact Cover P Clique
	Feedback Arc Set p Set Covering
	Feedback Node Set P Set Covering
	Max Cut P Steiner Tree
	Exact Cover P Satisfiability
	Hitting Set P Satisfiability
	Satisfiability p Knapsack
	Satisfiability p Feedback Node Set
	Undirected Hamiltonian Circuit p Hitting Set

	Conclusions
	Future Work
	Appendix
	Other Edges in the Cycle
	Chromatic Number Clique Cover
	Knapsack Partition
	Clique Node Cover
	Exact Cover Hitting Set
	Clique Set Packing
	Satisfiability Satisfiability With At Most 3 Literals Per Clause
	Exact Cover 3-Dimensional Matching
	Satisfiability p Clique
	Node Cover p Feedback Arc Set
	Node Cover p Feedback Node Set
	Node Cover p Set Covering
	Directed Hamiltonian Circuit p Undirected Hamiltonian Circuit
	 Partition p Max Cut
	Satisfiability P 0-1 Integer Programming
	 Chromatic Number p Exact Cover
	 Satisfiability with at Most 3 Literals Per Clause p Chromatic Number
	 Knapsack p Sequencing
	 Knapsack p Partition
	 Node Cover p Directed Hamilton Circuit
	Exact Cover p Steiner Tree
	Exact Cover p Knapsack

	Problem Statements
	Corrections on Original Reductions
	Corrections

